
The Fragmentation Attack in Practice

Andrea Bittau∗

a.bittau@cs.ucl.ac.uk

September 17, 2005

Abstract

The 802.11 encryption standard Wired Equivalent
Privacy (WEP) is still widely used today despite
the numerous discussions on its insecurity. Al-
though WEP definitely faces serious security prob-
lems, there is no single tool which will recover any
WEP key with minimal effort from the user and
in a very short amount of time.

In this paper, we present a mechanism which al-
lows an attacker to send arbitrary data on a WEP
network after having eavesdropped a single data
packet. Many common WEP attacks require gath-
ering large amounts of data before they may be
performed whereas ours requires only one, making
it much quicker and more practical.

We implemented a fully automatic version of
this attack which enables even non technical peo-
ple to perform it and recover a key without effort
and in a relatively short period. Hopefully this will
induce people to abandon WEP as their wireless
security solution—it is no longer the case that only
skilled and patient attackers may recover the key
in practice.

1 Introduction

Everyone knows that WEP is broken but only a
minority manage to recover keys successfully in
practice. The reason for this is partly because
most of these attacks require long waiting times
or a more skilled use of various tools. As many
believe that it is unlikely for an attacker to spend

∗University College London, Computer Science Dept.

hours around their network, people prefer to adopt
WEP rather than seeking more sophisticated and
possibly more difficult to manage security solu-
tions. This will no longer be the case as with the
fragmentation attack, hours become minutes.

By far the most famous WEP attack is the one
related to weak IVs formally described in [5]. In-
terestingly enough, these weak RC4 keys were first
noted in 1995 [15] before the 802.11 standard [8]
became available in 1999! It is clear that WEP was
designed without too much thought or research
effort. The weak IV attack relies on statistical
data and calculates which key is the most prob-
able. Each guess made for a particular key byte
is correct ≈ 5% of the time. For this reason, it
is necessary to collect a large volume of statistics
(data packets in this case) before a candidate key
byte reaches a reasonable probability of being cor-
rect. In practical scenarios 1,000,000 data packets
could be necessary for a full key to be recovered. If
following a link of a WWW page causes 100 pack-
ets of traffic, a user on the network may need to
view 1,000 links before the WEP key is potentially
broken—not an immediate task!

Following the publication of the weak IV attack
numerous attempts to improve it were made. An
example is that of [6] which generalizes the attack
to include multiple output bytes. The weak IV
attack relies on the first clear-text byte of each
data packet to be known—an easy requirement as
most packet headers commence with constant val-
ues. The generalized attack utilizes the second and
third byte too. The improvement is not drastic as
there are only a few weak IVs for additional out-

1

mailto:a.bittau@cs.ucl.ac.uk


put bytes and the probability they yield for a key
byte being correct is low.

Methods for guessing key bytes with 13% chance
of success are mentioned in [14] although not thor-
oughly explained. Possibly these have been used in
private implementations (the author of this paper
had one [3]). A description of these 13% probabil-
ity attacks, including many more, was finally pub-
lished in [10] and implemented in the aircrack [4]
tool. This was a drastic improvement—only ≈
500, 000 data packets are now required.

However, many real wireless networks are rather
“silent” requiring the attacker to have much incen-
tive in order to passively gather large amounts of
data for a long period of time. The most common
optimization is the replay attack. An Address Res-
olution Protocol (ARP) request, identifiable by its
length and broadcast destination, is eavesdropped
and replayed on the network. This will cause an
ARP reply to be generated. The attacker may
therefore flood the network and capture the re-
sulting traffic. The only problem with this attack
is the rate with which data can be injected and
the rate with which traffic is created. Many im-
plementations require two wireless cards—one for
transmission and one for reception. This attack is
quite effective although the user must have some
knowledge on how to perform it—it is not totally
trivial (unless a sophisticated tool is developed).

An entirely different approach in breaking WEP
is illustrated and used by the WEPWedgie [12] tool.
Here, the attacker is able to transmit arbitrary
data without knowing the key. The requirement
for accomplishing this is that the network must
use shared-key authentication, which is rarely used
today. The attack presented in this paper uses
a similar strategy to WEPWedgie although the re-
quirement is much more practical—a single data
packet of any type needs to be eavesdropped.

The rest of this paper is organized as follows.
In Section 2 the minimum required background
knowledge on WEP is presented. Following that,
the fragmentation attack is described in Section 3.
The description will include how to initiate the at-
tack and different ways in which the attack may be

IV + key{

seed

RC4

{“PRGA”

0

1

1

1

1

0

⊕

=

0

0

0

1

0

1

Plain text

Cipher text

Figure 1: WEP encryption.

completed, either by recovering the key or decrypt-
ing data via other means. Section 4 analyzes the
difficulties, if any, in implementing the attack in
practice. It includes information on the hardware
used and the description of the tool developed by
the authors. The results (such as cracking time)
obtained from running this tool are presented in
Section 5. Finally we conclude in Section 6.

2 WEP Operation

WEP is a stream cipher used to encrypt the data
portion of data packets in 802.11 networks. The
802.11 header is always in clear-text and both
management and control frames are entirely trans-
mitted unscrambled. WEP is built on top of
RC4 [13] and the 802.11 standard specifies a 40-
bit pre-shared key, although 104-bit keys are com-
monly used today. A seed is constructed by pre-
pending a 24-bit initialization vector (IV) to the
secret key. This seed is used to setup RC4’s state
via the Key Scheduling Algorithm (KSA). The out-
put of RC4’s Pseudo Random Generation Algo-
rithm (PRGA) is XOR-ed with the clear-text in
order to produce the cipher-text. The pseudo-
random sequence produced by RC4 will be referred
to as PRGA throughout the rest of this paper. The
whole process of WEP encryption is summarized
in Figure 1. Decryption is performed in an analo-
gous way by performing a XOR of the cipher-text
with the PRGA.

When encrypting, a checksum (CRC32) of the

2



data is appended to the message body and is en-
crypted with the rest of the data. This checksum
allows the the decrypting process to verify whether
decryption was successful.

The IV chosen for producing RC4’s seed is pre-
pended in clear-text in the payload being sent.
Normally, each data packet will have a different
IV and in practice implementations tend to use an
incremental counter for their IV generation. The
weak IV attack operates by eavesdropping partic-
ular IVs which reveal information about key bytes
from the KSA. Some modern implementations of
WEP tend to filter out these IVs and not use them
in order to make attacks more difficult.

2.1 PRGA

Each different IV will produce a different PRGA
as the RC4 seed will have changed. A single
secret key will have 224 different PRGAs. In
essence, WEP encryption and decryption is a XOR
with one of these PRGAs. In order to decrypt a
packet, the PRGA produced from the IV specified
in the packet must be XOR-ed with the clear-text.
To encrypt a packet, the requirements are more
relaxed—XOR the clear-text with any PRGA. It is
enough to have a single PRGA and keep transmit-
ting each time using that same IV which generated
the PRGA.

XOR (denoted as ⊕) is a symmetric operation.
That is, clear ⊕ PRGA = cipher, and cipher ⊕
PRGA = clear. Furthermore, cipher ⊕ clear =
PRGA. Therefore, one possible way of recovering
PRGA is by knowing the cipher-text and clear-text
and by performing a XOR operation on the two.
The cipher-text could easily be obtained by eaves-
dropping a packet from the network. If the PRGA
is recovered from that cipher-text then transmis-
sion may occur by always using the same IV used
in the captured packet. That PRGA may also
be used to decrypt future packets which use that
IV. However the problem of calculating the PRGA
from the cipher-text is knowing the clear-text.

In Shared Key authentication, the Access Point
(AP) sends a 128 byte challenge to the client. The

client responds with the encrypted version of the
challenge in order to authenticate. By eavesdrop-
ping this transaction, 128 bytes of PRGA may triv-
ially be obtained—both the clear-text and cipher-
text traverse the network! This is exactly the vul-
nerability WEPWedgie exploits. The 802.11 stan-
dard actually describes this scenario and discour-
ages implementations to re-use the IV used in the
authentication transaction in order to prevent at-
tackers from decrypting future packets which hap-
pen to use that particular IV. What it fails to men-
tion is the fact that transmission with that same
IV may occur indefinitely from an intruder.

An interesting aspect of this attack is that the
key is never known nor recovered. Many ciphers
rely on the complexity of the key for their security.
This attack may be launched with the same sim-
plicity no matter how long and complex the key
is. In fact, it is totally independent of the KSA
and from RC4 in general—it would work even if a
stream cipher other than RC4 was used to gener-
ate the PRGA.

An extension the WEPWedgie tool provides is
transmitting data using the source IP address of an
Internet host the attacker controls. This way the
attacker may receive data on that host and obtains
a 2 way communication channel. It may be useful
in order to circumvent firewalls—perhaps the net-
work is firewalled from the Internet, but not from
the wireless.

The WEPWedgie attack will only work on net-
works with Shared Key authentication which are
almost extinct today. The fragmentation attack is
an attempt use the approach of WEPWedgie in all
wireless networks and not be limited only to the
ones which use Shared Key authentication.

3 The Attack

In order to recover PRGA, clear-text must be
known. How much clear-text is know in all pack-
ets? Each 802.11 data packet is Logical Link Con-
trol (LLC) encapsulated. The LLC header is vir-
tually always followed by Sub-Network Access Pro-
tocol (SNAP). The LLC/SNAP header, illustrated

3



0xAA{
DSAP

0xAA{
SSAP

0x03{
CTRL

0x00 0x00 {
ORG code

0x00 0x08 ??{

Ether type

Figure 2: LLC/SNAP header contained in practi-
cally all 802.11 data frames.

in Figure 2, is 8 bytes in length and contains (al-
most always) constant fields except for the Ether-
net Type which defines the protocol which follows
in the stack. The two common candidates for this
field are IP or ARP. The value for both of these
protocols commence with 0x08 making the first 7
bytes of clear-text always known with a very high
degree of probability.

If IP packets were distinguishable from ARP
packets, then 8 bytes of PRGA would be known.
Deciding whether a given packet is IP or ARP gen-
erally is not too difficult in practice. All ARP
packets have a fixed length of 8 + 8 + 20 = 36
(the size of LLC/SNAP + ARP header + ARP
data) and are broadcast in the case of ARP re-
quests. Any packet which has a larger size than
this may safely be considered an IP packet. There
is an exception. Some hardware seems to pad ARP
packets (or short packets in general) to 54 bytes.
In such cases, packets larger than 54 bytes can be
considered to be IP and broadcast packets of 54
bytes to be ARP. Anyway, it is possible to build a
list of hardware which performs this padding and
infer whether or not it is present in this network
by deducing the manufacturer of the AP from its
MAC address prefix [7].

In general, at least 8 bytes of clear-text are
known.1 This means that 8 bytes of PRGA may be
recovered after eavesdropping a single data packet
(by performing a XOR). At this point, arbitrary
data of 8 byte length may be sent. In reality, the
scenario is slightly worse. Only 4 bytes of useful
data could be transmitted as 32 bits are required
for the checksum, which is also ciphered. With

1In reality, more bytes of clear-text are known. For ex-
ample the IP version and header length is generally con-
stant. In the case of ARP packets, much more is known as
the ARP header is virtually all constant.

only 4 bytes available the attacker could not get
very far—the LLC/SNAP header itself is 8 bytes
long. . . not to mention IP!

3.1 Fragmentation

The 802.11 standard defines fragmentation at a
MAC layer. During fragmentation, WEP encryp-
tion is performed independently on each individ-
ual fragment. Nothing stops each fragment from
having the same IV. It is therefore possible to send
data in chunks of 4 bytes with the 8 bytes of PRGA
that has been recovered. The fragment number
field is 4 bits allowing a maximum of 24 = 16
fragments. This would allow an attacker to inject
4 × 16 = 64 bytes of arbitrary data. A minimal
IP packet requires 8 + 20 = 28 (LLC/SNAP + IP
header) bytes of data. It is therefore possible to
send 64−28 = 36 bytes of IP data on the network.
Note that at this stage IP fragmentation may also
be used if more data needs to be sent.

To bootstrap the attack, the attack may discover
more PRGA. Since arbitrary data can be injected,
a long broadcast frame may be sent, which the AP
will then relay. The AP will transmit it as a single
frame as it has no incentive to fragment it into tiny
chunks. The clear-text is definitely known (the at-
tacker generated the frame) and the relayed frame
can be trivially eavesdropped, ultimately revealing
a larger portion of PRGA. This may be repeated
until a large enough PRGA is obtained, perhaps
of a size equal to the Maximum Transmission Unit
(MTU) after which fragmentation is no longer nec-
essary in order to transmit frames.

3.2 Decrypting Data

Not having the ability to receive data is a great
limitation in most cases. There is a generic tech-
nique which may be applied in order to decipher
an arbitrary packet in a linear amount of time with
respect to the packet length.

Suppose that a packet has been eavesdropped
and the attacker needs to decrypt it. If the PRGA
for the IV used in that packet was known, the
clear-text would be recovered by performing a

4



XOR with the cipher-text. The first 8 bytes of
PRGA for that packet are known (as discussed pre-
viously) and data may be transmitted using them.
For example, a broadcast frame may be sent, and
the AP will relay it. Note that if the 8 bytes of the
calculated PRGA were incorrect, the AP would
not relay the packet. An attacker may guess the
9th byte of PRGA and try transmitting a broad-
cast frame in 9 byte chunks. If the AP relays the
frame, the guess was correct. Thus, after at most
256 guesses, the 9th byte of PRGA will be revealed.
This means that the 9th clear-text byte may also
be calculated (XOR cipher-text and PRGA). The
next byte of PRGA may now be guessed and the
process continues until the whole frame has been
decrypted.

The 802.11 specifications does not allow frag-
ments of odd length (except for the last fragment)
but all implementations the authors came across
do permit them, therefore making this particular
technique feasible. If implementations complied to
the specification, the attacker could simply make
only the last fragment longer.

A naive implementation of this technique could
use a timeout in order to decide whether the AP
did not relay the frame because of an incorrect
PRGA guess. A quicker implementation could ex-
ploit the fact that multicast frames are also relayed
and that MAC addresses in the 802.11 header are
in clear-text. If the current PRGA guess is 0xAB
a multicast frame destined to 01:00:5E:00:00:AB
(corresponds to the IP address 224.0.0.x) may be
transmitted. Effectively all guesses (0–255) may
be sent in parallel and only one will be relayed.
The correct guess may be read off the multicast
destination address in the relayed frame. This
technique will reveal the next PRGA byte in the
order of seconds making the decryption of an en-
tire packet take only a couple of minutes.

3.2.1 Decrypting ARP Packets

Useful and simple packets to decrypt are ARP
packets. The benefit of decrypting them is dis-
covering the IP addresses present in the network.

0x00 0x01{

MAC type

0x08 0x00{

Net type

0x06{

MAC
len

0x04{

Net
len

0x00 ??{

Type

Figure 3: Format of the ARP header. This header
is followed by the source MAC and IP addresses.

The format of the ARP header is illustrated in
Figure 3. It is followed by the sender’s MAC and
IP addresses. The first really unknown value in
an ARP packet is actually the source IP, therefore
no time is spent decrypting useless information.
The request type is known: if it is a broadcast, it
is an ARP request, else it is an ARP reply. The
source MAC address is also known—it is transmit-
ted in clear-text in the 802.11 header! Decrypting
the 4 bytes of the source IP will take less than a
minute and strictly speaking, only 3 bytes are nec-
essary to reveal the network address. Knowing an
IP address allows the attacker to “assign” himself
an address and communicate with other hosts—
potentially, even with the Internet!

3.2.2 IV Dictionary

Another technique may be used to decrypt data
in the long run although it is both time and space
consuming. Each time the AP relays a frame, it
will most likely use a different IV. The attacker
may flood the network with broadcast frames and
calculate the PRGA for the relayed version of each
frame. As these frames will use different IVs the
attacker may slowly build an “IV dictionary”—a
database of all PRGAs for this particular network.
If a packet (encrypted using a specific IV) is sent
on the network, the attacker may check whether he
obtained the PRGA for that IV and decrypt the
packet. If the broadcast frames used in building
the dictionary are the size of an MTU, then any
frame size may be decrypted for the PRGAs ob-
tained so far. Once the dictionary is complete, the
network may be fully used without ever knowing
the key!

Considering the Ethernet MTU of 1500 bytes,

5



the 24 bit IV space will cause the dictionary to be
of at least 224 × 1500 = 25, 165, 824, 000 bytes (≈
23.4GB). Also, 224 = 16, 777, 216 packets would
have to be relayed by the AP. However, hardware
which filters out weak IVs may lower these figures
significantly—“helping” against one attack, aids in
the achievement of another one!

It is possible to build a dictionary with entries
containing a PRGA length of less than the size of
the MTU. Often the attacker is only interested in
the first couple of bytes in a packet which normally
contain login data (such as POP3, FTP and telnet
credentials). If the attacker wishes to use the In-
ternet connectivity of the wireless network, he may
setup a VPN with an Internet server which only
uses small packet sizes and route all traffic through
that VPN. To compare this approach against a full
dictionary, using 128 byte PRGA entries, a dictio-
nary of only 2GB would be required and its con-
struction would be much quicker as smaller packets
could be sent at a higher rate.

3.3 Recovering the Key

To recover the WEP key one must rely on the
weak IV attack which requires gathering many
data packets. Being able to inject arbitrary data
may speed this process up a lot. Instead of blindly
replaying ARP packets (which is today’s most ef-
fective technique) an attacker may choose to ping
the broadcast IP address. Hopefully this will
cause multiple replies to return effectively causing
a “smurf” Denial Of Service (DoS) attack.

A more adventurous approach would be at-
tempting to contact a host on the Internet. A
requirement is obtaining the router’s MAC ad-
dress. Many times this is the MAC address of
the AP itself. Another technique would be to rely
on heuristics and send an ARP request to IP ad-
dresses which terminate with a .1 or .254. The
ARP reply is easily detected by its fixed length
and the destination MAC address (the attacker’s).
The source MAC (clear in the 802.11 header) of the
ARP reply hopefully will be the router’s MAC. Al-
ternatively, the attacker may analyze the traffic of

the network and see which destination MAC ad-
dress is the most popular and infer it being an
Internet gateway.

A benefit of causing an Internet host to flood is
speed. No longer does the attacker need to gener-
ate a packet, wait for an 802.11 ACK and finally
wait for the AP to relay it. The attacker simply
passively waits for packets transmitted by the AP
and ACKs them. It is often difficult to transmit
and receive “concurrently” with wireless devices
making it hard to quickly inject and receive traf-
fic. This is why many replay attack implementa-
tions suggest using two physical wireless cards. If
the Internet is flooding, the attacker only needs to
send a packet once in a while, potentially to keep
the Network Address Translation (NAT) connec-
tion alive (in the case of private networks). The
identity of this host may be hidden by spoofing the
source IP address whilst flooding. It will also work
with NAT by sending the “flood request” packets
to the spoofed host, which for example, may be
down or firewalled.

Note that if the weak IV attack is being per-
formed, packets can be minimal in size as only the
first 1–3 data bytes are ever used. The number
of unique IVs is what matters (essentially the fre-
quency of packets). It is therefore possible even
for a low bandwidth Internet connection to cause
a high number of packets per second as they may
be of minimum size.

3.4 Hybrid Attack

While waiting for enough packets to be captured
in order to perform the weak IV attack, it is pos-
sible to build the IV dictionary, thus carrying out
both attacks concurrently. Although the AP will
most likely be using a different IV while it is flood-
ing, other wireless stations may transmit with IVs
for which the attacker has already recovered the
PRGA, enabling him to decrypt their traffic.

If the Internet is being used as a flood source
while building the dictionary, some care must be
taken. The Time To Live (TTL) field in the IP
packet will be different and so will the resulting

6



IP checksum. Assuming the forward and reverse
path are symmetric (same number of hops) it is
possible to calculate the change in the TTL. The
attacker transmits a packet to the Internet host
with a pre-defined TTL making it possible for the
host to calculate the change which occurs. The
host may encode this delta in the length of a packet
it transmits. For example it may transmit a packet
of length x + ∆TTL. The attacker will be able
to spot packets destined to itself in this specific
length range of x + max(∆TTL). By knowing the
change in TTL, the attacker can conclude what
the TTL of the received packet should be, since
the Internet host also will transmit with a pre-
defined value. The attacker can also calculate the
new IP checksum and therefore recover the PRGA
correctly.

Since MTU length of PRGA normally needs to
be recovered, a low bandwidth host is no longer
optimal—packets need to be large and frequent.
The attacker may therefore instruct the Internet
host to either send MTU sized packets for a dic-
tionary attack or minimum sized packets for the
weak IV attack depending on the network speed.
Ultimately the attacker may also send feedback to
the Internet host about congestion and flow con-
trol in order to avoid packet loss and obtain an
optimal flood rate.

If a mechanism for resetting the IV generator
existed, only a minimal dictionary would need to
be built. Once the IV generator exceeds the last
IV the attacker possesses, the generator could be
forced to be reset and cause the station to transmit
with known IVs. This area has not been researched
yet but the most likely way of doing this would be
to cause the AP to crash, or maybe even simpler,
force clients to disassociate.

4 Implementation

Like all other WEP attacks, this particular one
seems great in theory. However, we were keen
in seeing it work out in practice. The main hur-
dle to pass was determining whether the hardware
available in the market would allow the sending

of raw 802.11 frames. It is well known that many
wireless cards support the commonly called “mon-
itor mode” which allows the driver to read all raw
802.11 frames. It is less obvious how to inject data.
The first attempt was made using Intersil Prism2
cards [9].

4.1 Prism2 Based Cards

Prism2 cards support “host AP” mode which al-
lows creating an AP in software. The kernel
is responsible for sending particular management
frames and encapsulating data frames—exactly
what is needed for this attack. A Linux driver
named airjack [11] uses this technique to allow a
user to inject (almost) any raw 802.11 frame and
receive traffic concurrently. After initial experi-
mentation, it is easy to discover that the Prism2
firmware changes some fields in the 802.11 header
before transmission, such as the sequence and frag-
ment number.

However, there is a somewhat known work
around to this problem and the solution is briefly
mentioned in [2]. Prism2 cards have an auxiliary
(AUX) debug port which provides raw access to
the card’s memory. The basic idea is to queue
the packet in the normal way for transmission and
locate its header via the AUX port. Just after
instructing the card to transmit, one could busy
wait reading a header byte (such as the duration)
through the AUX port until it is modified. At that
point, the firmware has done its processing and is
about to send it off to the radio. Just before it is
able to transmit the packet physically, the modi-
fied packet header bytes can be re-written via the
AUX port. It is a race condition which is virtually
always won in practice.

Our implementation was for the FreeBSD wi
driver. First, all the airjack functionality was im-
plemented. This allows the sending of raw frames
(with no firmware re-transmits) and the receiving
of all frames. After that, the AUX overwriting
was implemented in order to send fragments prop-
erly (need control over the fragment and sequence
numbers). There were also other subtle aspects

7



which were encountered and needed to be resolved.
For example, the More Fragment bit needs to be
set only when the overwrite is performed and not
when the packet is queued normally. Another is-
sue is that when the WEP bit is set, it is cleared
after the firmware processing although the packet
does indeed get transmitted as a WEP one. How-
ever, it is important not to set the WEP bit when
performing the re-write or the card will not trans-
mit. Obviously none of this is documented which
caused the authors to have great fun.

The main limitation with our Prism2 implemen-
tation has to do with the fact that reception is
difficult after transmission. Possibly this is due
to the fact that the author of this paper is a to-
tally unskilled kernel developer or the card indeed
has some limitations. For example it is not pos-
sible to receive the ACKs after each fragment is
sent (802.11 requires each fragment to be acknowl-
edged).

4.2 Atheros based cards

Atheros [1] cards are mostly software radios mak-
ing them ideal for packet injection. The FreeBSD
ath driver has been modified in order to allow the
sending and reception of raw frames. Reception is
easily achieved by simply changing the RX filter to
accept all frames, including control frames. Con-
trol frames turned out to be very useful as the card
is able to spot ACKs for data being sent, making it
possible to implement re-transmissions in the at-
tack.

Atheros will readily send out WEP fragments.
It does however mangle the fragment and sequence
number although the fix is much simpler compared
to the Prism2 approach. The packet needs to be
queued with a type of ‘2’ (which indicates PS-Poll
frames). In order to eliminate re-transmissions
from the firmware, a flag indicating that the packet
requires no ACKs exists.

The only limitation with the Atheros implemen-
tation is the inability to send ACKs in time. Ei-
ther ACKs are not sent properly, or more likely,
they are sent too late. This probably occurs as

the card might be transmitting after DIFS time
rather than SIFS. There surely is a solution, but
currently this problem has not been looked into.
The work around is to simply have any other wire-
less card in range with the same MAC address as
the one being used in the attack. The firmware
of that card will blindly send an ACK when data
arrives for it.

4.3 The Tool: wesside

Our goal was to provide an easy to use tool. Al-
though the wireless drivers need to be patched be-
fore the tool may be used, it does not mean that
the user must be a computer literate—providing a
Live CD is an option.

Our final product is called wesside and when
launched with no command line arguments does
the following:

1. Channel hops looking for a WEP network.

2. Once a network is found, it tries to authenti-
cate.

(a) If authentication fails, it attempts to find
a MAC address to spoof.

3. Once authenticated, it associates.

4. After it eavesdropped a single data packet, it
discovers at least 128 bytes of PRGA by send-
ing out larger broadcasts and intercepting the
relayed packets.

5. After it eavesdropped an ARP request, it de-
crypts the IP address by guessing the next
four bytes of PRGA using multicast frames.

6. It floods the network with ARP requests for
the decrypted IP address.

7. Launches aircrack (v2.1) each 100,000 pack-
ets captured for 1 minute and attempts to de-
crypt the key. If 3,000,000 packets have been
captured so far, the cracking time is increased
to 10 minutes and cracking is started every
1,000,000 packets.

8



The tool could be much smarter, and it is, but
only when launched with at least one command
line argument: the IP of an Internet host. The
tool acts as described previously but with these
differences:

• After the IP network is discovered, an ARP
request for the IP address terminating with
“.1” is sent and the reply is waited for (the
tool assumes this will be the router). The IP
address ending in “.123” is assigned to the
attacker.

• After the MAC address of the router is ob-
tained, a UDP packet to the Internet host is
sent each 5 seconds. ARP requests also con-
tinue to be sent in order to maintain the at-
tacker’s IP address in the router’s ARP cache.
This allows IP traffic to be forwarded back to
the attacker.

• The Internet host may either:

1. Sends short packets. In this case, weak
IV key decryption occurs periodically as
described previously.

2. Sends MTU length packets. In this case,
other than periodically attempting the
weak IV attack, the tool also builds a dic-
tionary. The tool will bind to a TAP in-
terface. This TAP interface may be used
for transmission and occasionally for re-
ception whenever a packet with a known
IV traverses the wireless network.

The attacker may choose whether to run the
short or MTU length packet server on the In-
ternet host.

There are many ways in which this tool could be
made smarter. For example it may ping a broad-
cast address when launched with no arguments or
it may use better heuristics for determining the
router’s MAC address. However, our main goal
was to provide a working and usable proof of con-
cept. If the results prove to be outstanding, then
it might be worth developing a more sophisticated
tool.

5 Evaluation

In this section, we show the performance of the
attack tool which has been developed. The level
of how much the fragmentation attack is a threat
in practice will be evident by the results. The tool
was tested by performing experiments on common
everyday hardware. The setup for all the experi-
ments is as follows:

• AP: Linksys WRT54G.

• Attacker: Laptop, P4 2.4GHz, 512MB RAM,
Atheros 802.11g.

• “Internet” host: Laptop, Celeron 400MHz,
200MB RAM, 100Mb Ethernet attached to
AP WAN port.

In all cases, once the wesside tool is started by
the attacker, a single ARP request is generated by
a host attached to the LAN port of the AP. This is
the requirement for the bootstrap of the fragmen-
tation attack. Although any packet type will allow
PRGA determination, the IP discovery has only
been implemented on ARP packets and for that
reason such a packet is generated. This require-
ment does not distort results too much. Firstly, IP
packets (and thus the source IP) may be decrypted
in the same way as ARP packets without taking
too long. Secondly, a smarter version of the tool
may cause wireless clients to de-authenticate from
the AP by spoofing a de-authentication manage-
ment frame (management frames are sent in clear-
text). Once the client re-associates, the most likely
data it will immediately send is an ARP request
for its own IP for the router’s.

This setup is also best case in terms of connec-
tivity with the “Internet” as the flood host is con-
nected directly to the WAN port, effectively hav-
ing a 100Mbit/s connection. When presenting the
results, we will calculate how much bandwidth is
actually being used in order to demonstrate that
this throughput could be achieved on most real
Internet links.

The efficiency of the attack is measured in two
stages. The first stage is the “preparation” to

9



the flooding (bootstrapping)—i.e. determining
network parameters and its configuration before
flooding may commence. The metric used in this
stage is time—the quicker the better.

The second part of the attack either involves
decrypting the key, building a dictionary or both.
In all cases, the more data packets received, the
better. For this part of the attack, the metric used
is the packets received per second.

5.1 Bootstrap speed

The bootstrap of the attack includes:

• Determining PRGA.

• Determining an IP.

• Determining the router’s MAC address (relies
on the “.1” IP address heuristic).

All of this is independent of the key size and
its complexity as no KSA attacks are being per-
formed. Thus, the metric obtained for the boot-
strapping procedure should be very similar across
all networks and configurations.

The results are as follows. From when the first
data packet is eavesdropped, it takes 1 second to
determine 144 bytes of PRGA. For 1500 bytes of
PRGA it takes less than 2 seconds.

It takes ≈ 6 seconds to decrypt a single byte of
the IP and < 30 seconds to decrypt the whole IP
address.

Finally, determining the router’s MAC address
takes less than a second, simply because we “force”
the router to have an IP address ending with “.1”.
This assumption is realistic and may work in many
cases. Another way of instantly forwarding pack-
ets would be to use the AP’s MAC address as a
destination—APs normally forward packets them-
selves.

In short, it takes less than a minute for an at-
tacker to be able to transmit any data and deter-
mine an IP address on a WEP wireless network
after he eavesdropped a single ARP packet. This
metric is quite network independent as no assump-
tions are being made about the WEP key.

5.2 Flood rate

The are two main ways in which the network may
be flooded:

1. Send ARP requests. This emulates the simple
replay attack (good for comparisons).

2. Use the Internet to flood. This is the main
intent of this tool.

Additionally, there are two main “modes” of flood-
ing:

1. Short packets. These are useful only for the
weak IV attack.

2. MTU sized packets. These are useful in all
cases, but the flooding rate is potentially
lower.

These two modes of flooding have been imple-
mented only for Internet based flooding.

The results are as follows. The simple replay-
like attack will generate ≈ 350 unique (no re-
transmissions) packets per second (p/s). The In-
ternet flood with small packets will cause ≈ 950
p/s. These packets are UDP with 5 bytes of data
and their total packet size on the Internet will
roughly be 14 + 20 + 8 + 5 = 47 bytes (size of
Ethernet + IP + UDP headers + data). Thus
the Internet traffic generated is approximately
47 × 8 × 800 = 357, 200 bits/s. An ADSL with
512Kbit/s downstream could easily handle that.
To compare all these metrics with “normal” traf-
fic, a ping -f with no replies and 56 data bytes
generates ≈ 550 p/s. An FTP download generates
≈ 150 p/s. Beware that the FTP download was
occurring from an 11Mbit/s client so a 802.11g link
would yield a higher rate. However, what is impor-
tant to note is that “normal” traffic on a network
will almost never exceed the rate of data sent by
a ping -f.

The MTU size packet flood for populating the
dictionary will generate ≈ 50 p/s. This low rate
is due to an implementation issue. Currently the
way the dictionary is stored is in a directory hi-
erarchy. The PRGA for the IV 0xAABBCC will

10



Flood source ≈ p/s
802.11b client FTP download. 150
LAN client ping -f (no replies). 550
ARP replay-like attack. 350
Internet flood (short packets). 950
Internet flood (MTU sized packets)
& dictionary logging in directories.

50

Internet flood (MTU sized packets)
& dictionary logging in a file.

250

Table 1: Approximate packet rates reached when
using different flooding mechanisms.

be located in the path “/AA/BB/CC”. Creating di-
rectories is a slow process so the bottleneck is
the actual filesystem—not the network. By sim-
ply logging the dictionary in a file (which may
then be post-processed) it is possible to generate
≈ 250 p/s. This rate will require a 2.8Mbit/s In-
ternet connection which is not always available.
With 50 p/s a 512Kbit/s connection should suffice
and completing the dictionary would take at least

224

50×60×60 = 93 hours. Generating 250 p/s would
yield a full dictionary in at least ≈ 17 hours.

A full dictionary attack is not quite practical
unless in extreme cases—investigating how to re-
set the IV generator would be one option. Also,
a dictionary containing PRGAs of less than MTU
size would require much less traffic possibly mak-
ing this approach more practical. For example,
using a PRGA length of 1

3 MTU should yield ap-
proximately triple the packet rate (≈ 250× 3) re-
quiring ≈ 6 hours of flooding.

All the packet rates obtained from all these ex-
periments are summarized in Table 1.

5.3 Cracking time

Although key cracking using the weak IV attack
is outside the scope of this work, some results are
presented here. Initially, all cracking is run for
less than 1 minute and with the default “fudge”
factor (the breadth with which the key is searched
amongst the possible candidates) of 2. Cracking
commences each 100,000 packets captured. After

3,000,000 packets have been obtained, the cracking
time is increased to 10 minutes and cracking occurs
each 1,000,000 packets captured. The reason being
that as the number of packets increase, the time
to load the cracking process and the time it needs
to perform calculations increases. Therefore it was
not sensible to crack for only a single minute when
a very large number of packets had to be processed.

The experiments involve a very limited sam-
ple of keys which were generated by reading from
/dev/urandom. Although this sample is insignifi-
cant, it does give a vague idea on how many pack-
ets are required and how long the tool takes to
complete the whole attack. The time taken for
the attack is measured from the launch of the tool
until the key is displayed to the user. The results
are displayed in Table 2.

Different keys have diverse properties requiring
a different volume of traffic to be gathered before
they are cracked. An interesting thing to note is
that the 40-bit candidate keys all took about 5
minutes to be recovered! Conversely, 104-bit keys
seem to take much longer and there is no evident
trend from the tested sample on how many packets
could be required on average. In some cases (such
as the key requiring 10M packets) a dictionary at-
tack could have been effective too.

The worst case scenario of this sample is an at-
tack time of about 3 hours while the best case took
only about 2 minutes. A wild guess could be that
most keys will be recovered in ≈ 1 hour—only ex-
perience will tell.

In many cases it was possible to obtain the key
with less packets by simply running the cracking
process for longer or with a higher fudge factor. An
important consideration to make is that the fur-
ther into the process, the laptop’s CPU would slow
down significantly (even to 50% of its through-
put) because of temperature rise—a common phe-
nomenon whilst cracking! Cracking on a desktop
with proper cooling would have been more ideal.

Also, note that the IVs being captured are in-
cremental in a linear way. Only the AP generates
traffic in this test network and no one else. In a real
scenario, there would be a larger mix of collected

11



Key Packets Time (m)
2C:CE:FC:1D:2B 100,000 1.93
80:19:B8:3F:C8 200,000 3.83
6F:34:11:BC:A3 200,000 4.30
91:B7:C0:A7:F7 300,000 5.45
3B:07:DA:02:B7 300,000 5.60
EB:A6:50:D0:2B:DA:CC:B7:E1:B7:E8:50:59 1,700,000 30.77
D9:06:CA:9E:EA:B3:18:CD:24:9F:2E:5E:10 2,400,000 42.85
5E:02:F4:83:FE:F6:27:10:21:EC:8E:87:27 2,700,000 49.17
64:AC:EE:55:B7:7E:27:93:09:6B:78:00:78 9,000,000 156.58
41:0A:68:52:5B:BE:C7:64:D7:09:FC:CC:BB 10,000,000 181.28

Table 2: Approximate packets required for cracking random keys and the total attack time.

IVs as other stations would be transmitting too
with an IV generator at a different phase. Thus,
the number of packets needed may be totally dif-
ferent in a real network. Also the IV space covered
is always starting from 0 onwards. It may be that
more weak IVs lie towards the end of the 24 bit
space.

6 Conclusions and Future Work

The fragmentation attack proves to be highly prac-
tical as its bootstrap can be completed in less than
a minute. Although the key is not recovered and it
is not possible to receive data during this interval,
the network is under a great threat as the attacker
may transmit arbitrary data. It is trivial to use
this power in order to flood the network and aid
other WEP cracking techniques.

There are two main questions related to this
attack which still need to be assessed. The first
one is how can the flood rate be increased, i.e.,
what is the maximum number of packets per sec-
ond which may be caused to traverse a wireless
network. If the rate doubles, the time needed the
gather weak IVs will halve—a significant improve-
ment for cracking the key. The other aspect to
examine is whether there is a systematical way to
reset the IV generator so that only small dictio-
naries are required in order to all decrypt traffic.

WEP networks with low traffic were considered

to be “safe” since it would require an attacker to
wait many hours, perhaps days, before the key
could be recovered. With the fragmentation at-
tack, this is no longer the case as the key could
potentially be recovered in less than a couple of
hours. Furthermore, an attacker may cause se-
vere damage by launching DoS attacks or by ARP
spoofing hosts. We believe that the fragmentation
attack was the missing link in providing an efficient
and practical mechanism for breaking WEP.

7 Acknowledgments

The author of this paper would like to thank
Joshua Lackey for discovering and disclosing the
fragmentation vulnerability. This whole attack
was a collaboration of numerous people and the
author of this paper simply gathered the knowl-
edge, filled in the missing bits and provided an
implementation.

The author would also like to thank David Hul-
ton, Anton Rager and Michael Lynn for much in-
formation on this attack. A big thank you goes to
Alex Lee who lend his Atheros card to the author.
Finally many thanks to Mark Handley who allowed
the author to work on this while he should have
been developing protocols for Mark rather than
breaking other ones!

12



References

[1] Atheros Communications. Atheros chipset.
http://www.atheros.com.

[2] J. Bellardo and S. Savage. 802.11 denial-of-
service attacks: Real vulnerabilities and prac-
tical solutions. 2003.

[3] A. Bittau. Additional weak IV classes for the
FMS attack. 2003. http://www.darkircop.
org/sorwep.txt.

[4] C. Devine. aircrack, 2004. http://www.
cr0.net:8040/code/network/.

[5] S. Fluhrer, I. Mantin, and A. Shamir. Weak-
nesses in the Key Scheduling Algorithm of
RC4. Lecture Notes in Computer Science,
2259:1–24, 2001.

[6] D. Hulton. Practical Exploitation of RC4
Weaknesses in WEP Environments. 2002.

[7] IEEE. MAC address prefix list (OUI).
http://standards.ieee.org/regauth/
oui/oui.txt.

[8] IEEE. Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifica-
tions, 1999.

[9] Intersil. Prism2 chipset. http://www.
intersil.com/globespanvirata.

[10] KoreK. Next generation of WEP at-
tacks?, 2004. http://www.netstumbler.
org/showpost.php?p=93942&postcount=35.

[11] M. Lynn. airjack, 2003. http://
sourceforge.net/projects/airjack/.

[12] A. Rager. WEPWedgie, 2003. http://
sourceforge.net/projects/wepwedgie/.

[13] R. L. Rivest. The RC4 Encryption Algorithm.
RSA Data Security, Inc., Mar. 12, 1992. (Pro-
prietary).

[14] A. Stubblefield, J. Ioannidis, and A. Rubin.
Using the Fluhrer, Mantin, and Shamir At-
tack to Break WEP. 2001.

[15] D. Wagner. Weak Keys in RC4, 1995.
http://www.cs.berkeley.edu/∼daw/
my-posts/my-rc4-weak-keys.

13

http://www.atheros.com
http://www.darkircop.org/sorwep.txt
http://www.darkircop.org/sorwep.txt
http://www.cr0.net:8040/code/network/
http://www.cr0.net:8040/code/network/
http://standards.ieee.org/regauth/oui/oui.txt
http://standards.ieee.org/regauth/oui/oui.txt
http://www.intersil.com/globespanvirata
http://www.intersil.com/globespanvirata
http://www.netstumbler.org/showpost.php?p=93942&postcount=35
http://www.netstumbler.org/showpost.php?p=93942&postcount=35
http://sourceforge.net/projects/airjack/
http://sourceforge.net/projects/airjack/
http://sourceforge.net/projects/wepwedgie/
http://sourceforge.net/projects/wepwedgie/
http://www.cs.berkeley.edu/~daw/my-posts/my-rc4-weak-keys
http://www.cs.berkeley.edu/~daw/my-posts/my-rc4-weak-keys

	Introduction
	WEP Operation
	PRGA

	The Attack
	Fragmentation
	Decrypting Data
	Decrypting ARP Packets
	IV Dictionary

	Recovering the Key
	Hybrid Attack

	Implementation
	Prism2 Based Cards
	Atheros based cards
	The Tool: wesside

	Evaluation
	Bootstrap speed
	Flood rate
	Cracking time

	Conclusions and Future Work
	Acknowledgments

