
Cracking WEP Keys

Applying known techniques to
WEP Keys

Tim Newsham

© 2 0 0 1 @ S T A K E , I N C .

Introduction

 Developed WEP key cracking software

– Dictionary attack on the key generators

– Dictionary attack on raw keys

– Brute force of the 64-bit key generator

 Analyzed Key Generators

 Did not perform new cryptanalysis on the WEP
protocol

 Did not look at 802.1x and Radius

© 2 0 0 1 @ S T A K E , I N C .

Talk overview

 Motivation

 WEP protocol overview

 WEP keying

 WEP key generators

 A WEP Cracker

 Results

 Related Work

© 2 0 0 1 @ S T A K E , I N C .

Why Perform Dictionary attacks on WEP?

 Security is as good as the weakest link

 Key cracking attacks the human problem

 But Isn’t WEP already broken?

– Key cracking is often simpler to implement and perform

– Key cracking can be less time consuming

© 2 0 0 1 @ S T A K E , I N C .

Wired Equivalent Privacy

 Purpose – bring the security of wired networks to
802.11

 Provides Authentication and Encryption

 Uses RC4 for encryption

– 64-bit RC4 keys

– Non-standard extension uses 128-bit keys

 Authentication built using encryption primitive –
Challenge/Response

© 2 0 0 1 @ S T A K E , I N C .

Header Payload ICVPayload

802.11 Frame

WEP Encryption

 ICV computed – 32-bit CRC of payload

CRC

32

© 2 0 0 1 @ S T A K E , I N C .

 ICV computed – 32-bit CRC of payload

 One of four keys selected – 40-bits

KeyKeynumber

Key 1

Key 2

Key 3

Key 4

WEP Encryption

40

4 x 40

© 2 0 0 1 @ S T A K E , I N C .

 ICV computed – 32-bit CRC of payload

 One of four keys selected – 40-bits

 IV selected – 24-bits, prepended to keynumber

IV

WEP Encryption

keynumber

24 8

© 2 0 0 1 @ S T A K E , I N C .

 ICV computed – 32-bit CRC of payload

 One of four keys selected – 40-bits

 IV selected – 24-bits, prepended to keynumber

 IV+key used to encrypt payload+ICV

IV Key

ICVPayload ICVPayloadRC4

WEP Encryption

64

© 2 0 0 1 @ S T A K E , I N C .

 ICV computed – 32-bit CRC of payload

 One of four keys selected – 40-bits

 IV selected – 24-bits, prepended to keynumber

 IV+key used to encrypt payload+ICV

 IV+keynumber prepended to encrypted payload+ICV

ICVPayloadIV keynumberHeader

WEP Encryption

WEP Frame

© 2 0 0 1 @ S T A K E , I N C .

 Keynumber is used to select key

WEP Decryption

KeyKeynumber

Key 1

Key 2

Key 3

Key 4
40

4 x 40

© 2 0 0 1 @ S T A K E , I N C .

WEP Decryption

IV Key

ICVPayload ICVPayloadRC4

64

 Keynumber is used to select key

 ICV+key used to decrypt payload+ICV

© 2 0 0 1 @ S T A K E , I N C .

WEP Decryption

CRC

ICVPayload

Header Payload

ICV’

 Keynumber is used to select key

 ICV+key used to decrypt payload+ICV

 ICV recomputed and compared against original

32

© 2 0 0 1 @ S T A K E , I N C .

WEP Authentication

 Uses WEP encryption primitives

– Nonce is generated and sent to client

– Client encrypts nonce and sends it back

– Server decrypts response and verifies that it is the same nonce.

 Authentication is optional

© 2 0 0 1 @ S T A K E , I N C .

128-bit Variant

 Purpose – increase the encryption key size

 Non-standard, but in wide use

 IV and ICV set as before

 104-bit key selected

 IV+key concatenated to form 128-bit RC4 key

IV Key

ICVPayload ICVPayloadRC4

24 104 128-bits

© 2 0 0 1 @ S T A K E , I N C .

WEP Keying

 Keys are manually distributed

 Keys are statically configured

– Implications: often infrequently changed and easy to remember!

 Four 40-bit keys (or one 104-bit key)

 Key values can be directly set as hex data

 Key generators provided for convenience

– ASCII string is converted into keying material

– Non-standard but in wide use

– Different key generators for 64- and 128-bit

© 2 0 0 1 @ S T A K E , I N C .

Key Entry Example

© 2 0 0 1 @ S T A K E , I N C .

64-bit key Generator

M y P

a s s p

h r a s

e seed PRNG

34 f8 a9 27

ee 61 7b f7

ab a3 35 59

12 e7 a3 98

62 c3 f3 7f

6a 8e a3 59

. . .
 Generates four 40-bit keys

 ASCII string mapped to 32-bit value with XOR

 Value used as seed to 32-bit linear congruential PRNG

 40 values generated from PRNG, one byte taken from
each 32-bit result

40 iterations

32 bits

40 x 32 bits

© 2 0 0 1 @ S T A K E , I N C .

64-bit Generator Flawed!

 Ideally should have at least 40-bits of entropy

 Key entropy is reduced in several ways

© 2 0 0 1 @ S T A K E , I N C .

ASCII Mapping Reduces Entropy

 ASCII string mapped to 32-bits

 XOR operation guarantees four zero bits

– Input is ASCII. High bit of each character is always zero

– XOR of these high bits is also zero

– Only seeds 00:00:00:00 through 7f:7f:7f:7f can occur

M y P

a s s p

h r a s

e

32 bits

© 2 0 0 1 @ S T A K E , I N C .

PRNG Use Reduces Entropy

– For each 32-bit output, only bits 16 through 23 are used

– Generator is a linear congruential generator modulo 2^32

 Low bits are “less random” than higher bits

 Bit 0 has a cycle length of 2^1, Bit 3 has a cycle length of 2^4, etc..

– The resultant bytes have a cycle length of 2^24

– Only seeds 00:00:00:00 through 00:ff:ff:ff result in unique keys!

PRNG

34 f8 a9 27

ee 61 7b f7

ab a3 35 59

40 iterations

40 x 32 bits

. . .

© 2 0 0 1 @ S T A K E , I N C .

Entropy of 64-bit Generator is 21-bits

– The ASCII folding operation only generates seeds 00:00:00:00
through 7f:7f:7f:7f

 High bit of each constituent byte is always zero

– Only seeds 00:00:00:00 through ff:ff:ff:ff result in unique keys

– Result: Only 2^21 unique keys generated!

 Only need to consider seeds 00:00:00:00 through 00:7f:7f:7f with zero
high bits

© 2 0 0 1 @ S T A K E , I N C .

128-bit Generator

 One 104-bit key is generated

 ASCII string is extended to 64-bytes through repetition

 MD5 of resulting 64-bytes is taken

 104-bits of output selected

 Key strength relies on the strength of MD5 and of the
ASCII string

My PassphraseMy Pass… MD5 032f6d8e8392… …8df926a
64 bits 64 bits

104 bits

© 2 0 0 1 @ S T A K E , I N C .

Designed and Implemented a WEP Cracker

 Proof of concept: bells and whistles left out

 Perform dictionary attack against WEP keys

– Find keys generated from a dictionary word

– Find keys that are ASCII words

 Consider each of the four 64-bit WEP keys or the single 128-bit WEP
key

 Perform brute force of the weak 64-bit WEP generator

 No support for other brute force attacks

© 2 0 0 1 @ S T A K E , I N C .

Structure of WEP Cracker

 Packet collector

 Guess Generator

 Mapping guesses to WEP keys

 Key verifier

Guess
Generator

Packets

Map
To

Keys

Key
Verifier

Success?

© 2 0 0 1 @ S T A K E , I N C .

Packet Collector

 Collect the appropriate packets needed for guess
verification

– Collects 802.11 DATA packets

– Two packets collected

 Reads from pcap-format file

– Simplifies design and allows for off-line cracking

– Capture utilities such as PrismDump already output to this format

© 2 0 0 1 @ S T A K E , I N C .

Making Guesses

 Dictionary attack

– Read wordlist from file

– Lots of room for improvement. For example, rule-based word
generation.

 Brute force of generator

– Generate sequential PRNG seeds between 00:00:00:00 and
00:7f:7f:7f

© 2 0 0 1 @ S T A K E , I N C .

Mapping Guesses to Keys

 Direct translation of ASCII to key bytes

– Five ASCII bytes mapped to a single 64-bit WEP key

– Thirteen ASCII bytes mapped to the 128-bit WEP key

– Truncation of long words, zero-fill for short words

 Use of the key generator functions

– Map ASCII to keys with 64-bit generator

– Map ASCII to keys with 128-bit generator

– Map PRNG seeds to keys with 64-bit generator

© 2 0 0 1 @ S T A K E , I N C .

Key Verification

 Authentication (Challenge/Response) packets

– Easiest to verify

 Challenge/Responds provides known plaintext

– Not ideal - Infrequent and optional

 Data packets

– Verify that decrypted packets are well-formed

– Verify that ICV is correct

– Inexact: can result in false-positives

 Verifying against several packets increases assurance

© 2 0 0 1 @ S T A K E , I N C .

ICV Verification

 Get IV and keynumber from packet

 Form RC4 key from IV+key[keynumber]

 Decrypt payload+ICV

 Recompute ICV and compare

 Probability of false match is 2^-32

– Matching two packets gives high assurance

© 2 0 0 1 @ S T A K E , I N C .

Results

 Proof of concept constructed

– Dictionary attack on ASCII keys and 64- and 128-bit key generators

– Brute force of 64-bit generator

 Performance on PIII/500MHz laptop

– Brute force of 64-bit generator in 35 seconds, 60,000
guesses/second

– 60,000 guesses/second against 64-bit ASCII keys

– 45,000 guesses/second against 128-bit generated keys

– 55,000 guesses/second against 128-bit ASCII keys

© 2 0 0 1 @ S T A K E , I N C .

Brute Force of Keys

 Brute force of 40-bit keys is not practical

– About 210 days on my laptop

– ~100 machines could perform attack in reasonable time

– Better attacks exist

 Brute force 104-bit keys is not feasible

– 10^19 years

© 2 0 0 1 @ S T A K E , I N C .

Implications

 64-bit generator should not be used

 If ASCII keys or generated keys are used, string
should be well chosen

– Use similar guidelines as when choosing a login password

 Random 40-bit keys have reasonable strength

 Well chosen 104-bit keys, generated or not, are strong

© 2 0 0 1 @ S T A K E , I N C .

Related work – Bad News

 Ian Goldberg et al and Jesse Walker

– WEP encryption is fundamentally flawed

– Attack times on the order of a few days

 Bill Arbaugh et al

– WEP authentication can be performed without knowing the key

– Extended Goldberg’s attacks against WEP encryption – easier to
perform

 Places upper limit on cracking efforts – 1-2 days

© 2 0 0 1 @ S T A K E , I N C .

That’s All Folks…

 tnewsham@stake.com

 Source code provided on CD or at
http://www.lava.net/~newsham/wlan/

 Source code is Public Domain

 Questions?

