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Foreword on objectives of this report 
The software aircrack has been created and maintained by Christophe Devine. As 

there is no change or maintenance to perform on aircrack by our team, the objective of 
our report is to provide documentation. 

Our analysis is starting from scratch because no document was provided at the 
beginning. 

We have therefore used static analysis principles and tools. The report contains 3 
main parts: general information surrounding WEP and wireless networks, specification 
recovery and design recovery. Even if the static analysis has been done in a bottom-up 
way (design, then specification), specification is presented first, to preserve 
understanding. Our analysis is mainly based on flow analysis (control and data flow). 

We do not know if Christophe created documentation for himself while developing 
aircrack. If he did, this paper might provide him an alternative view of his software, and 
show him another way to present it. 

That’s the reason why this document will be proposed to Christophe. 
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Introduction / Context 
This report aims to present a comprehensive document to aid in the understanding of 

AirCrack, a WEP encryption key cracker. 

First, some general concepts about wireless networks and more especially encryption 
will be explained. This includes the WEP algorithm that uses RC4 as the encryption 
algorithm. We will also talk about FMS attacks, the most famous cracking algorithm. 
Those concepts are needed to understand the way the program operates. If you’re already 
familiar with wireless networks and WEP encryption, feel free to skip it. 

Then we will explain the objectives of AirCrack: what does it do, and how does it do 
it? 

In a second part, we will explain the architecture and design of AirCrack, its general 
components and how they are used. Diagrams obtained by reverse engineering tools will 
help in this task. 

The third part details the implementation of the cracking in the software. Although it 
might be a little technical, it’s the most interesting part for crypto analysts. 
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Part 1 - General Information 

1.1 - A word on AirCrack 
AirCrack is an 802.11 WEP key cracker. Its main purpose is to find the secret key 

used during a communication in a wireless network. The program collects certain number 
of packets from the network, dumps them in a file, and once an enough variety of packets 
are collected, it starts the cracking and obtain the WEP secret key. The need for diverse 
packets is crucial, because the more different pieces of information it has, the better are 
the chances of cracking. 

The author is Christophe Devine, a French software engineer fond of cryptography 
and computer science. Information and download area of AirCrack can be found at the 
address http://www.cr0.net:8040/code/network/. AirCrack is distributed under the GNU 
General Public License. 

1.2 - Wired Equivalent Privacy (WEP) 
Wired Equivalent Privacy (WEP) is part of the IEEE 802.11 standard and is a 

scheme used to secure wireless networks. Because a wireless network broadcasts 
messages using radio waves, it is principally susceptible to eavesdropping; WEP was 
designed to provide comparable confidentiality to a traditional wired network, hence the 
name Wired Equivalent Privacy. 

However, several serious weaknesses were identified by cryptographers, and WEP 
was superseded by Wi-Fi Protected Access (WPA) in 2003, and then by the full IEEE 
802.11i standard also known as WPA2 in 2004. Despite the inherent weaknesses, WEP 
provides a bare minimal level of security that can deter casual snooping, and this is where 
AirCrack blows the WEP security protocol out the window. 

1.2.1 - Encryption process 
The following figure explains the encryption process. Briefly, an IV (which stands 

for Initialization Vector) is appended to the secret key. The aim of theses IVs is to ensure 
that the value used as a seed for the RC4 algorithm is always different. A gold rule is to 
never reuse an old key. 

The key goes through the RC4 to create the keystream, which is XORed with the 
plaintext. The IV used to encrypt the packet is appended to the encrypted packet in order 
to be able to decrypt it. 

Getting the IV is apparently not enough to achieve to decrypt a packet. 
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Figure 1 - WEP encryption process 

The length of the IV is 3 bytes (24 bits), and the length of the secret key can be 5, 13, 
29 or 61 bytes. When a key is claimed 64 bits long, it consists of 24 bits of IV and 40 of 
secret key (the same applies for 128 bits long, 104 bits of secret key). In cryptography, 
only the secret part of a key counts. WEP is therefore weaker than it claims it is. 

1.2.2 - Wireless Packet Format 
In order to get a better understanding on how WEP secures it’s packets against 

snooping and sniffing, let’s have a look to a regular wireless non encrypted packet. 

 
Figure 2 - Non-Encrypted Wireless Packet 

The header of the packet starts at the beginning up to the frame body. The first 2 
bytes concerns frame control, holding information about the protocol, the type, if there 
are other fragments, etc. Sometimes this part might have a length of 8 bytes in case LLC 
is used. After the duration/ID bytes are stored 4 addresses of 6 bytes length each and the 
sequence control. 

The frame body is the payload, and at the end the Frame Sequence Check, usually 
computed with the CRC algorithm. 

The following figure displays the format of an encrypted wireless packet, and 
highlights the encrypted and non-encrypted parts. 
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Figure 3 - WEP Encrypted Wireless Packet 

As a matter of fact, in order to route the packet through the network, the packet 
header cannot be encrypted, because it holds destination and transmission addresses. 

This diagram shows that the IV is not encrypted (because it is needed during the 
decryption process), and AirCrack takes advantage of this fact. It uses these IVs 
(specifically unique IVs) in order to crack the WEP key and allow a malicious user 
access to the wireless network. 

Let’s now have a look at the encryption part of WEP. 

1.3 - RC4 Encryption Algorithm 
The encryption algorithm that WEP uses is called RC4. 

In cryptography, RC4 (or ARCFOUR) is the most widely-used software stream 
cipher and is used in popular protocols such as Secure Sockets Layer (SSL) (to protect 
Internet traffic) and WEP (to secure wireless networks). RC4 falls short of the high 
standards of security set by cryptographers, and some ways of using RC4 lead to very 
insecure cryptosystems, especially in our case and the WEP protocol.  There are two 
main algorithms’ that are part of the RC4 encryption algorithm; the KSA, Key 
Scheduling Algorithm, is the first part of the encryption process and the second part is the 
PRGA. The Pseudo Random Generation Algorithm is the part of RC4 process that 
outputs a streaming key based on the KSA’s pseudo random state array. 

1.3.1 - Key Scheduling Algorithm (KSA) 
Here is the algorithm of KSA: 

KSA(K) 
K[] = Secrete Key array 
Initialization: 
For i = 0 to  N - 1 
  S[i] = i 
j = 0 
Scrambling: 
For i = 0 to N - 1 
  j = j + S[i] + K[i mod l] 
  Swap(S[i], S[j]) 
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The Key scheduling algorithm is quite simple. It initializes an array of values with values 
of 0 to N in the position of the array a[0] to a[N]. It then performs a series of swapping 
between the values of the array in order to scramble the values. 

The next step is performed by the Pseudo Random Generation Algorithm. 

1.3.2 - Pseudo Random Generation Algorithm (PRGA) 
Here is the algorithm of PRGA: 

 
As the name indicates this algorithm is used to generate a random key. It goes about 
doing this by first initializing the two array indicators to zero. It then increments the two 
indicators separately and swaps values from the array using the two indicators. From this 
method/algorithm someone with programming knowledge can see that it is not the best 
pseudo random algorithm possible, but it is effective enough for the purpose of RC4 
encryption. Together the KSA and PRGA are the heart of the RC4 algorithm and are also 
the reason why it is vulnerable. Because WEP keys rely intimately upon the RC4 
algorithm the weakness of the RC4 algorithm is passed on the WEP key and as such 
makes it susceptible to being cracked. 

1.4 - Weaknesses of WEP 
When WEP is active in a wireless network, each wireless packet is encrypted 

separately with the RC4 cipher stream generated by a 64-bit key. This key is composed of 
a 24-bit initialization vector (IV) and a 40-bit secret key. The encrypted packet is 
generated with a bitwise exclusive OR (XOR) of the original packet and the RC4 stream. 
IVs are chosen by the sender’s computer and are changed periodically so that every 
packet won't be encrypted with the same cipher stream. The IV is sent in the clear with 
each packet and is not encrypted with the RC4 key. An additional 4-byte Integrity Check 
Value (ICV) is computed on the original packet and appended to the end. The ICV is also 
encrypted with the RC4 cipher stream unlike the IV. 

WEP has been widely criticized for more than one apparent weakness; among those 
weaknesses we include a few in the following section. 

PRGA(K) 
Initialization: 
i = 0 
j = 0 
Generation Loop: 
  i = i + 1 
  j = j + S[i] 
  Swap(S[i], S[j]) 
  Output z = S[S[i] + S[j]] 
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1.4.1.1 - Key management and key size 
One of the major problems in the WEP standard is that key management is not 

specified and without interoperable key management, keys will tend to be long-lived and 
of poor quality. Most wireless networks that use WEP have one single WEP key shared 
between every node on the network. Access points and client stations must be 
programmed with the same WEP key. Since synchronizing the change of keys is tedious 
and difficult, keys are hardly ever changed. And on top of that fact, the 802.11 standard 
does not specify any WEP key sizes other than 40 bits & 104 bits. 

1.4.1.2 - The IV is too small 
The WEP's IV size of 24 bits provides a maximum of 16,777,216 different RC4 

cipher streams for a given WEP key, for any key size. It is important to remember that 
the RC4 cipher stream is XOR-ed (a simple & easily reversible operation) with the 
original packet to give the encrypted packet that is transmitted, and on to further weaken 
it’s position, the IVs that are sent with each packet are not encrypted and are transmitted 
in the clear. 

The general problem brought up with this point is IV reuse. After a few hours of 
operation in a heavily loaded wireless network, IVs possibilities start to be exhausted, 
and IVs begin to repeat themselves. Moreover NIC manufacturers implement the IV 
generation algorithm as they want, so sometimes you find a simple increment of the IV, 
starting at 0. So if you restart your computer, you’ll start sending the same IVs again and 
again. 

The direct consequence is that if the RC4 cipher stream for a given IV is found, an 
attacker can decrypt subsequent packets that were encrypted with the same IV. He can 
also forge his own packets and submit “evil” packets to users on that wireless network. 

1.4.1.3 - The ICV algorithm is not appropriate 
The WEP ICV is based on CRC-32, an algorithm for detecting noise and common 

errors in transmission. CRC-32 is an excellent checksum for detecting errors, but an 
awful choice for a cryptographic hash. The CRC-32 ICV is a linear function of the 
message. Hence CRC(x^y) = CRC(x)^CRC(y). 

Without going into details, it means that an attacker can modify an encrypted 
message and easily fix the ICV so the message appears authentic. Being able to modify 
encrypted packets provides for a nearly limitless number of very simple attacks. For 
example, an attacker can easily make the victim's wireless access point decrypt packets 
for him. Simply capture an encrypted packet stream, modify the destination address of 
each packet to be the attacker's wired IP address, fix up the CRC-32, and retransmit the 
packets over the air to the access point. The access point will happily decrypt the packets 
and forward them to the attacker through the wired network. 



11 / 34 

A better-designed method of packet control for ICV would use algorithms such as 
MD5 or SHA-1. 

1.4.1.4 - Considerations on the Key ID 
The key ID, or KID, also called key index, is an identifier of the shared secret key to 

use. It enables to use many different keys on the same link. The shared secret key chosen 
by the sender will be concatenated with the IV; the receiver will know which shared 
secret to use thanks to the KID. 

The KID takes 1 byte in the packet; in fact it consists of 2 bits of information and 6 
bits of padding. Therefore only 4 possible keys can be used per network. 

1.5 - FMS Attack 

1.5.1 - Cracking process 
AirCrack uses the FMS attack in exploiting the network and getting the encryption 

key. The FMS attack named after its inventors Fluhrer, Mantin, and Shamir implements a 
passive cipher text-only attack against RC4 as used in WEP. 

The principle is the same as in every cracking involving XOR: catch the encrypted 
data, and if you know the plain text, you’ll recover the key! 

We’ll go through a few step of cracking to explain how the cracking can be done. 
This explanation originally comes from ref [3]. 

Before getting into the details, we need to define a few values: 

• The captured weak IV is 3, 255, 7. This value was chosen because it was tested 
and is known to be a real weak IV. 

• The pre-shared password is 22222. Although a hacker would not know this before 
cracking WEP, we need to define it so you can see the cracking process in action. 

• N is 256 

• The initialization process of the state array has already occurred and seeded the 
state array with the 256 values. 

Here is the key array as a hacker would see it after capturing the IV. 

K[0] = 3 K[1] = 255 K[2] = 7 K[3] = ? K[4] = ? K[5] = ? K[6] = ? 

Next, we need to define and track the state array values, i value, and j value. This 
will be done before each loop is processed, so you can see how the values change. We 
will not show all 256 state array values because they are useless to the cracking WEP 
process. Only the first four state array values and any value that has changed will be 
shown. 
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In this equation, you can see that the j and i value were 0, which is used by the S[] 
array (S[0] = 0) and the K[] array (K[0] = 3). This resulted in the values of 0, 0, and 3 
being added together to assign the value of 3 to j. This value is then passed on to the swap 
function below. 

In this process, you can see that values held in S[0] and S[3] are swapped. This is an 
important process to watch, but remember there is a 5% chance that the values held in 
S[0] _ S[3] will not change after the first 4 KSA/PRGA loops. 

Note that in this loop the value of i increases by one and that a modulus operation 
was performed to determine the value of j. It is only coincidental that j = 3 again. 

Note that up to this point, only KNOWN values are used. Any hacker can reproduce 
this process up to this point. However, in the next step, the secret key is unknown, so a 
hacker has to stop. 

So, now a hacker is up against a wall. However, what if there was a way to 
determine the j value at this point? Fortunately, for a hacker, there is a way. A simple 
XOR calculation enables to determine this value from the first iteration of the PRGA 
process. 

Knowing this, let’s reflect on the XOR process that creates the encrypted data. The 
final step of the RC4 process is to XOR a PRGA byte per byte with the plaintext data. 
Since XOR works in both directions, we also know that we can get deduce the first byte 
of the PRGA if we XOR the first byte of the encrypted data with the first byte of 
plaintext. But what is the plaintext? 

KSA loop 1 
i=0 j=0 S[0]=0 S[1]=1 S[2]=2 S[3]=3 
j=j + S[i] + K[i mod l] = 0 + S[0] + K[0] = 0 + 0 + 3 = 3 so j = 3 

i=0  j=3 
Swap (S[i], S[j]) so Swap (S[0] , S[3]) 
As S[0] = 0 and S[3] = 3 we have S[0] = 3 , S[3] = 0 

KSA loop 2 
i=1  j=3  S[0]=3  S[1]=1  S[2]=2  S[3]=0 
j=j + S[i] + K[i mod l] = 3 + S[1] + K[1 mod 8] = 3 + 1 + 255 = 259 mod 
256 = 3 so j = 3 
i=1, j=3 
Swap(S[i], S[j]) is Swap (S[1] , S[3])  
As S[1]=1 , S[3]=0 we have S[1]=0 , S[3]=1 

KSA loop 3 
i=2  j=3  S[0]=3  S[1]=0  S[2]=2  S[3]=1 
j=j + S[i] + K[i mod l] = 3 + S[2] + K[2] = 3 + 2 + 7 = 12 so j = 12 
i=2, j=12 
Swap(S[i], S[j]) is Swap (S[2] , S[12]) 
As S[2]=2 , S[12]=12 we obtain S[2]=12 , S[12]=2 

KSA loop 4 
i=3  j=12  S[0]=3  S[1]=0  S[2]=12  S[3]=1  S[12]=2 
j=j + S[i] + K[i mod l] = 12 + S[3] + K[3] = 12 + 1 + ? = ? 
i=3, j=? 
Swap(S[i], S[j]) is Swap (S[3] , S[?]) 
As S[3]=1 , S[?]=? we just obtain S[3]=?? , S[??]=1 
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Fortunately, for a hacker this is easy thanks to the SNAP header (the value is 17010 
or AA16) and the use of a sniffer to capture the encrypted byte. In our example, we will 
provide the captured encrypted byte value (165 in decimal), which changes from packet 
to packet. 

The following equation illustrates the XOR process: 

As a result of this XOR calculation, a hacker can deduce that the PRGA value is 15 
(decimal). Now, he can reverse-engineer the PRGA process, and use this to determine the 
missing j value. First, let’s remind ourselves of the known loop values as they would 
occur entering loop 4 of the KSA. Remember, these values can be easily reproduced by 
the use of the IV values. 

From the previous discussion, you know that i will always equal 1 for the first 
iteration of the PRGA (line 5). This then means that j will always equal S[0] (line 6). As 
we can see from the KSA loop 4 input values, S[1] = 0. This then results in j being 
assigned the value of 0 (line 6). The values held in S[i] and S[j] are then swapped, which 
means that S[1] is swapped with S[0] resulting in S[1] = 3 and S[0] = 0 (line 7). These 
values are then added together, and used to pull a value from the state array. In this case, 
the combined S[i] and S[j] values = 3 (line 8). However, the S[3] value referenced to here 
is from the completion of KSA loop 4, which is unknown to us. Fortunately, due to the 
XOR process, we know that the resulting value is 15, which means that S[3] will equal 15 
at the output of KSA loop 4. Knowing this, a hacker only needs to reverse the KSA loop 
4 process to deduce the secret key value. 

Let’s now walk though this as a hacker would. 

First, we know that the final step in the KSA loop is to swap values. Knowing the 
values of the state array after loop 4 completes and before it starts is important. Thanks to 
the XOR ‘weakness’, we know S[3] will equal 15, and we can make an educated guess 
that S[15] will hold the value held by S[3] before loop 4, which is 1 in this case. As a 
result, a hacker can deduce that S[3]=15 and S[15]=1 after the swap. 

z = 0xAA(SNAP) XOR Ciphertext byte1 = 170 (Dec) XOR 165 (Dec) = 15 

KSA loop 4 
i=3  j=12  S[0]=3  S[1]=0  S[2]=12  S[3]=1  S[12]=2 
1. Initialization: 
2. i=0 
3. j=0 
4. Generation: 
5. i = i + 1 = 0 + 1 = 1 
6. j = j + S[i] = 0 + S[1] = 0 + 0 = 0 
7. Swap (S[i], S[j]) is Swap (S[1] , S[0]) 
   so S[1]=0 , S[0]=3 becomes S[1]=3 , S[0]=0 
8. z = S[S[i] + S[j]] = S[S[1] + S[0]] = S[3 + 0] = S[3] = ? 
9. ?=15 and S[3] =15 at KSA4 

KSA loop 4 
i=3  j=12  S[0]=3  S[1]=0  S[2]=12  S[3]=1  S[12]=2 
S[3]=15 , S[15]=S[3]t-1 gives S[3]=15 , S[15]=1 
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Next, a hacker swaps the values held in these positions, which leaves S[3] equaling 
1. 

A hacker then plugs the values into the equation that would produce the j value. This 
fills in all the fields except the value of the secret key array. 

 

After a simple reverse calculation, the value 2 is produced, which is the first byte of 
out secret key! 

1.5.2 - Replay attack 
The attack explained here above assumes that there is enough wireless traffic in 

order to collect sufficient amount of packets with unique IVs. However, in the case when 
there is no network traffic, it is possible to force the access point to generate new packets, 
and therefore new IVs. Basically the attacker will send old ARP requests to the base 
station, therefore invoking ARP responses. Here is a diagram illustrating how an artificial 
traffic could be generated: 

 
Figure 4 - ARP replay attack 

The attacker floods the network with the re-injected ARP’s request packets. This 
results in a flood of ARP responses, which then the attacker captures to initiate the FMS 
attack. 

AirCrack provides a component to perform this attack. That’s why Aircrack can be 
considered as a cracking solution rather than only a cracker program. 

Swap (S[3] , S[15]) so S[3]=1 , S[15]=15 

j=j + S[i] + K[i mod 256] = 12 + S[3] + K[3] = 12 + 1 + K[3] = 15 

K[3] = 15 – 12 – 1 = 2 
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PCAP.H

802ETHER.C

AIRCRACK.C

AIREPLAY.C

AIRPARSE.CAIRODUMP.C

Part 2 - Architecture 
Although Aircrack is a relatively small security program in terms of LOC, there is 

something to say about the tools it employs and the interactions between these tools and 
the central cracking component (aircrack.c). 

Figure 5 below represents the overall implementation view of the software.  In this 
section each component or tool is analyzed in terms of its required input and produced 
output. 

Following these details, information explaining the component interaction is 
explored, demonstrating how Aircrack as a program can be run completely independently 
from other software or tools needed for WEP cracking. 

This section of the report then goes into some details about architectural and design 
considerations that may or may not have been present in the implementation of the tool 
itself. 

2.1 - Overview 

Figure 5 – Aircrack Component Layout 

The overall explanation of this figure is that the airodump.c component uses 
airparse.c to verify the validity of the packets it is capturing (i.e. if they contain unique 
IVs that have not yet been captured, if they have the potential to allow key cracking and 
if they are well-formed packets).  These packets, stored in a pcap.h and csv file, are fed to 
aircrack.c where the cracking is performed.  A more detailed explanation of component 
interaction is given in section 2.3 - . 

2.2 - Aircrack and Supporting Tools 
Here detailed descriptions in terms of the objective and the input/outputs needed and 

produced, respectively, required for each component to play its part in Aircrack’s 
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cracking of the WEP key, are explained. Although aircrack.c itself is the part of the 
program that performs the cracking, the supporting tools allow Aircrack to be a 
standalone program that can gather everything it needs to perform an attack on and in the 
presence of the targeted wireless network. 

2.2.1 - Aircrack.c 

2.2.1.1 - Objectives 
Aircrack.c is the central component of the Aircrack program.  Essentially, this is 

where the cracking mechanism is employed and the WEP key of the targeted wireless 
network is recovered. 

2.2.1.2 - Input/Output Analysis 
 

 
Figure 6 – Aircrack.c Input/Output Sequence 

In Figure 5Figure 6 above, we illustrate the inputs to and the outputs generated from 
the aircrack.c component.  The input consists of a packet capture file (pcap file), 
produced by airodump.c.  Basically, the pcap file is a large set of packets that airodump.c 
was able to capture from the network.  To crack a 40-bit WEP key, ~200,000 packets are 
needed whereas for a 104-bit WEP key, ~500,000 packets are required.  The output of 
this component is the WEP key itself, which the component itself uses to verify if the key 
it found is indeed the WEP key that the target wireless network is using. 

2.2.2 - Airodump.c 

2.2.2.1 - Objectives 
This component is responsible for “gathering the building blocks” of the security 

cracking program. Airodump.c listens to all the traffic transacting from the targeted 
network and dumps the packets to a packet capture file (pcap).  Airdump.c uses airparse.c 
to select specific packets that have the potential to grant Aircrack the information 
necessary to crack the file, and drop those packets lacking this potential. 

This component could be replaced by any other network sniffer programs that could 
capture packets and store them in a pcap file 
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2.2.2.2 - Input/Output Analysis 
 

 
Figure 7 – Airodump.c Input/Output Sequence 

The input to airodump.c is the wireless packets that are being transacted through the 
network.  This requires a wireless NIC that must be set in promiscuous mode to capture 
all traffic flowing in the vicinity of the network.  A WiFi interface allows airodump.c to 
take these packets in and write them to the pcap file.  The output itself is the pcap file as 
well as a CSV (Comma Separated Values) file with captured packet data, separated by 
commas. 

2.2.3 - Airparse.c 

2.2.3.1 - Objectives 
The objective of airparse.c is to extract those packets that have the potential to allow 

the cracking process to be successful.  For example, it does not admit packets that are 
smaller than the 802.11 header size into the pcap file and skips uninteresting control and 
management frames.  It also keeps a running tally of unique IVs and access points to the 
target wireless network. 

2.2.3.2 - Input/Output Analysis 
 

 
Figure 8 – Airparse.c Input/Output Sequence 

The input to airparse.c is the partial dumps in the pcap file generated by airodump.c. 
It parses the packets in the pcap file it receives, and recopies those packets which have 
the potential to allow aircrack.c to be successful in cracking the WEP key.  The output is 
therefore another pcap file with the unyielding packets removed. 
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2.2.4 - Aireplay.c 

2.2.4.1 - Objectives 
The objective of aireplay.c is to generate traffic from the network when there is not 

much network activity present. aireplay.c replays ARP requests to induce responses from 
the access point and get more traffic to analyze (or dump). 

2.2.4.2 - Input/Output Analysis 
 

 
Figure 9 – Aireplay.c Input/Output Sequence 

As illustrated in the figure above, the input to aireplay.c is a packet capture file.  
aireplay.c can be run completely separately from the rest of the Aircrack program and 
tools.  The output of the aireplay.c component is old ARP requests that are continuously 
retransmitted. Of course, in order to capture these packets, airodump.c would be running 
at the same time as the packets are being replayed on a separate machine. 

2.2.5 - 802ether.c 
This program is used at the end of the chain, after finding the key. Its purpose is to 

decrypt wireless WEP encrypted packets and save them in the Ethernet format. 

The output is an Ethernet pcap file that can be read in ethereal or any pcap analyzer. 
The aim is usually to extract communications, TCP threads, and get the whole 
communication between two hosts. It enables to catch emails, attachments, all the activity 
on the wireless network. 

2.3 - Components Interaction 
The diagram below shows a more detailed representation of the way that these 

components interact and rely on each other for data and the success of the WEP cracking 
process. 
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Figure 10 – Aircrack Component Interaction Diagram 

Wireless packets are captured through the WiFi interface and dumped by airodump.c 
into a pcap file.  This pcap file is then passed to airparse.c to filter out only those packets 
that have the potential to bring the cracking process to success.  airparse.c then passes 
this new pcap file to the airodump.c component which then passes the file to aircrack.c.  
In cases where the traffic is too low to pick up the needed volume of packets, aireplay.c 
will read the pcap file and replay ARP requests from it to generate more traffic.  
airodump.c will then pick up the responses to these requests and dump more traffic to 
pass on to aircrack.c. Finally, once aircrack.c has finished performing the cracking 
operation, it displays to the screen the WEP key (or displays a message telling that the 
key could not be recovered). 

2.4 - Architecture and Design Considerations 
The architecture of Aircrack resembles most to a specialized pipe-and-filter 

architecture, or more specifically a batch-sequential system.  This architecture is 
established by the fact that each component depends on the other’s output, and some 
components in the architecture can be replaced as long as they provide the required input 
to the components it is connected to.  For example, airodump.c can be replaced by any 
network sniffer, as long as a pcap file is produced.  The only components that could not 
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be replaced are aircrack.c itself and airparse.c as airodump.c and airparse.c are too tightly 
coupled.  This pipe-and-filter system is working on an extremely small project relative to 
the kind of software architectures that make use of this schema. 

The design of the software itself was very low quality according to the standards of 
design practice in the software engineering field.  The entire program was coded in C, 
therefore practices of object-oriented design do not apply.  Variables used in the program 
were all declared globally, so coupling was very high and locality of functions and 
variable use was impossible to discern without the use of sophisticated reverse 
engineering tools. 

This program would definitely not be able to handle changes well since the design 
exhibits poor cohesion and high coupling.  For example, adapting to a new chipset for 
capturing wireless network traffic would entail changes throughout the entire 
implementation of the software (ripple effect).  Redesigning this software, therefore, 
would be a difficult task.  
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Part 3 - Design and implementation 
The previous part of the report was describing the general architecture of Aircrack. 

This part is going into the cracking system with much more details. 

3.1 - General idea of cracking 
The method is based on the FMS attack. 17 attacks are implemented up to now. It 

consists mainly in finding, thanks to assumptions of the FMS attack, the likelihood of a 
byte to appear at a given position. 

Each attack will perform its calculations and according to the result, it will vote or 
not for the byte being evaluated. The vote is symbolized by incrementing a counter (an 
integer) by one. 

For a given byte of the key, some of the 256 possibilities will be rated. Please note 
that the byte possibility being evaluated is found by the program; it is not a random value 
and aircrack is not performing a brute force attack. 

After the votes, hypothesis are sorted for each byte of key. Combinations are tested 
to try a supposed secret key by decrypting random packets with the secret key found. 

In fact, this process is done dynamically, that is some votes are calculated and even if 
there are only a few results some keys might be tried. In case of success, the process is 
much faster than waiting for complete results. In case of failure, vote’s calculation goes 
on. 

3.2 - aircrack.c details 
In this section we’ll explain what are the methods and algorithms contained in 

aircrack.c. 

However, understanding such algorithms might be difficult without having a look at 
variables, their structure and what data they store. This will be explained in the section of 
the function using the given variable. No mention will be done about variables 
declaration as it is usually done in the main and used globally. 
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3.2.1 - Function call graph 

 
Figure 11 - Function call graph of aircrack.c 

3.2.1.1 - Order of call of main functions 
This graph explains what are the methods of aircrack.c and in which order they are 
called. The methods are detailed in the following sections. read_ivs is the first method 
called; next calc_votes can be called n times, n representing the number of child 
processes instantiated by the main. This number can be input by command line, and is 1 
by default. 

The function do_wep_crack is called for each byte of the key, and controls the 
different calc_votes processes which execute a calculation. Communication between 
the 2 methods is achieved through pipes, 2 pipes for the 2 directions. do_wep_crack is 
called recursively on the next byte key as long as they key length is not reached. 

Finally check_wepkey is called each time do_wep_crack wants to test if a key 
combination is correct or not. 

3.2.1.2 - safe_read and safe_write 

Those functions are used to ensure that the communication throughout pipes is 
correct. Basically it reads in the pipe and checks the number of bytes read. That’s why 
both calc_votes and do_wep_crack use it. 
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3.2.1.3 - cmp_votes and my_sighandler 

cmp_votes is a very basic function to compare 2 numbers and return =, < or >. The 
reason of the creation of a routine for this task is that the field to compare is part of a 
structure, so the function is accessing it directly. 

my_sighandler is responsible for catching terminating signals (like control-C for 
example). In this case it exits the program more neatly than interrupting the process by 
force. 

3.2.1.4 - show_stats 
This function basically displays all relevant information gathered by the program in a 

terminal. Here is the content of the screen, going left to right, top-down: 

• number of unique IVs 
• fudge factor 
• running time since the loading of the file 
• statistics about the speed of the program, number of key tried 
• KB: key byte 
• depth of the search achieved over the number of branches estimated 
• votes: byte hypothesis and number of votes for this byte 
• and very often the secret key 
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Figure 12 - Screenshot of aircrack.c 

3.2.2 - read_ivs 

3.2.2.1 - Operation perfomed 
This function is in charge of extracting wireless packets from the capture file, and 

building an array of data used for the cracking. 

Basically, it opens the pcap file (file containing all captured packets), then performs 
some checks about the header of this file to ensure the proper format of the capture. The 
second stage is done as long as there are packets to read in the file: 

• it checks the packet is encrypted 

• it filters packets according to the MAC address given in input if there is one 

• it checks if the packet’s IV already exists or not 

• it adds the IV and the first 2 encrypted bytes to the ivbuf variable 

3.2.2.2 - ivbuf 

The one dimensional array ivbuf is filled by the function read_ivs as follows: 
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iv0 iv1 iv2 eb0 eb1 iv0 iv1 iv2 eb0 eb1 … iv0 iv1 iv2 eb0 eb1

from 1st packet from 2nd packet … from last packet 
Table 1 - ivbuf variable 

This array contains the initialization vector from each packet (3 bytes) and the first 2 
encrypted bytes of the payload. The IV can be recovered easily as it is unencrypted in the 
packet. The first 2 encrypted bytes are positioned just after the header of the packet, more 
especially after the KeyID. 

This is done for each valuable packet found by read_ivs. 

Below is the code explaining the affectation of the variable ivbuf: 

 

ivbuf

read_ivsmain

calc_votesmain

check_wepkeydo_wep_crack

do_wep_crack

main

main

 
Figure 13 - ivbuf caller tree 

ivbuf is used in all functions of aircrack.c. It is storing data which is heavily used in 
the cracking process. 

3.2.2.3 - nb_ivs , xv 

As you can see, the variable nb_ivs is used to shift in ivbuf and recover each 
structure {IV, first 2 encrypted bytes}. It is the number of IVs in the array. As the 
structure is 5 bytes long, it is multiplied by 5, and the offset enable to recover a specific 
byte. 

xv is also used to navigate through ivbuf array. 

        ivbuf[nb_ivs * 5    ] = h80211[z    ]; 
        ivbuf[nb_ivs * 5 + 1] = h80211[z + 1]; 
        ivbuf[nb_ivs * 5 + 2] = h80211[z + 2]; 
        ivbuf[nb_ivs * 5 + 3] = h80211[z + 4]; 
        ivbuf[nb_ivs * 5 + 4] = h80211[z + 5]; 
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3.2.3 - calc_votes 

3.2.3.1 - Operation performed 
This function calculates votes for each byte hypothesis. It performs the attacks on a 

specific byte of the key. 17 attacks are implemented, based on the KoreK attacks and on 
FMS principles. 

As said before, the communication with the parent process is done through pipes. 
That’s why the first operation done by calc_votes is to read the current state of the secret 
key array from the pipe. As permutations are done in the algorithm, to reverse it you need 
at least the beginning of the key, and on which key byte the function is working. 

Then it goes through a decryption process, therefore using KSA and PRGA. It 
performs a number of iteration equal to the number of key bytes discovered. It goes to the 
‘unknown boundary’ and can start the cracking there. 

The cracking, in fact the votes of each attack, consists of tests according to the 
current state of the key array and state array. If the condition is fulfilled, the vote counter 
is incremented. 

This function uses the data structure votes, explained in the next subsection. 

3.2.3.2 - N_ATTACKS, KoreK_attacks 
These variables are useful to understand the way the program runs. 

N_ATTACKS is a constant representing the number of attacks implemented in aircrack. 
This number increased release after release, as more attacks were found. There are 
currently 17 attacks. 

KoreK_attacks is an enumeration holding all possible attacks. The letter ‘A’ means 
attack, u means unstable, s means stable, and the number next to the letter represent the 
probability of success of the attack (15%, 13% or 5%, please refer to page 3 and 4 of ref 
[10] for explanations of these values). In fact it is closely linked to the probability that the 
value won’t swap during RC4. 
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3.2.3.3 - votes 

The variable votes is used to store the number of votes performed by each attack in 
favor of a given byte hypothesis, for a specified byte of the key. This means that this 
array is used for cracking one byte only. For a 13 bytes long key, this array will be used 
13 times. 

As you can see in the table, attacks come from the KoreK_attacks. The bytes are the 
possibilities for a byte to be the key at a precise position. Only a few examples of votes 
are given in the table, but usually the whole table is filled, by 0 if there have been no 
votes. 

   Byte hypothesis 
256 possibilities 

  Index (dec) 0 1 2 … 78 … 254 255 
  Byte (hex) 00 01 02 … 4E … FE FF 

A_u15                 
A_s13                 
A_u13_1                 
A_u13_2                 
A_u13_3                 
A_s5_1                 
A_s5_2                 
A_s5_3       … … … … … 
A_u5_1       … 24 92 19 … 
A_u5_2       … 86 11 145 … 

#define N_ATTACKS 17 
 
enum KoreK_attacks 
{ 
    A_u15,                      /* semi-stable  15%             */ 
    A_s13,                      /* stable       13%             */ 
    A_u13_1,                    /* unstable     13%             */ 
    A_u13_2,                    /* unstable ?   13%             */ 
    A_u13_3,                    /* unstable ?   13%             */ 
    A_s5_1,                     /* standard      5% (~FMS)      */ 
    A_s5_2,                     /* other stable  5%             */ 
    A_s5_3,                     /* other stable  5%             */ 
    A_u5_1,                     /* unstable      5% no good ?   */ 
    A_u5_2,                     /* unstable      5%             */ 
    A_u5_3,                     /* unstable      5% no good     */ 
    A_u5_4,                     /* unstable      5%             */ 
    A_s3,                       /* stable        3%             */ 
    A_4_s13,                    /* stable       13% on q = 4    */ 
    A_4_u5_1,                   /* unstable      5% on q = 4    */ 
    A_4_u5_2,                   /* unstable      5% on q = 4    */ 
    A_neg                       /* helps reject false positives */ 
}; 
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A_u5_3       … 13 73 20 … 
A_u5_4       … 5 24 37 … 
A_s3       … 78 148 13 … 
A_4_s13       … … … … … 
A_4_u5_1                 
A_4_u5_2                 
A_neg                 

Table 2 - votes variable 

votes is used in do_wep_crack and calc_votes. 

votes

calc_votesmain

do_wep_crack

do_wep_crack

main

 
Figure 14 - votes caller tree 

3.2.4 - do_wep_crack 

3.2.4.1 - Operation performed 
This function organizes the byte per byte cracking through calc_votes childs. 

1. it sends the current byte key and state array to each child through pipes 

2. it recovers the arrays votes for each key byte through pipes 

3. it compensates the votes with a stability factor; this factor is the level of 
confidence mathematically derived from the attacks. Some attacks are known 
to be 5% sure, some others 13% or 15%. 

4. it sorts votes, enabling to choose the most likely candidate 

5. it deepens the attacks as much as necessary or specified 

6. if the total key is recovered (5 or 13), check_wepkey is called 

7. otherwise, calls itself recursively to crack the next byte key 

Only the main (and most complex) steps will be explained, as well as the major 
variables. 

3.2.4.2 - wpoll 

This 2 dimensions array contains the structure byte_stat. byte_stat is basically 2 
members, index and votes. 
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wpoll contains the votes for all byte hypotheses for all bytes in the key. Those votes 
are sorted, so the column structure used in variable votes is no more possible, as column 
index need to be different for each byte key. 

The number of lines depends on the length of the key. 

As a drawing is always clearer than a long text, here is the structure of the variable. 

  Byte hypotheses 
256 structures sorted by votes 

  0 1 2 … 78 … 254 255 

0 index: F0 
votes: 241 

index: 7B
votes: 124

index: 23
votes: 37

index: ...
votes: … … … … … 

1 index: AB 
votes: 397 

index: C1
votes: 258

index: 1D
votes: 54

index: ...
votes: …      

2           
3           
4           
5           
6           
7           
8           
9           

10           
11           

K
ey

 b
yt

es
 (5

, 1
3 

or
 m

or
e…

) 

12           
Table 3 - wpoll variable 

It is exactly the data displayed on the screenshot of Figure 12. The first column 
contains the key bytes having the biggest number of votes. It is therefore likely that it is 
the secret key, especially if the number of votes is very high. 

3.2.4.3 - coeff_attacks 

The enumeration KoreK_attacks stress that the confidence in the attacks are 
different. This should be reflected in the voting process. This is done thanks to the 
coeff_attacks variable. 

int coeff_attacks[4][N_ATTACKS] = 
{ 
    { 15, 13, 12, 12, 12, 5, 5, 5, 3, 4, 3, 4, 3, 13, 4, 4, 0 }, 
    { 15, 13, 12, 12, 12, 5, 5, 5, 0, 0, 0, 0, 3, 13, 4, 4, 0 }, 
    { 15, 13,  0,  0,  0, 5, 5, 5, 0, 0, 0, 0, 0, 13, 0, 0, 0 }, 
    {  0, 13,  0,  0,  0, 5, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0 } 
}; 
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It stores the probability of success of each attack (in the row). There are 4 rows 
because it is possible to adjust the ‘stability’ of the attacks. This parameter value is 0 by 
default and can be input by command line (with ‘-s’). It cancels some attacks by affecting 
a factor of 0. However there is no mention whatsoever of this parameter in the help or in 
the documentation. It seems to be a hidden parameter used for testing purposes. 

3.2.4.4 - Eventually... explaining step 3 

The variable wpoll is therefore the combination of the votes recovered by 
calc_votes childs and the balancing of these votes by coeff_attacks. 

The last line is a safekeeping of false positive results of attacks. It lessens a lot the 
likelihood of the key byte depending how many votes the A_neg attacks gave. 

This piece of code is the main calculation of the votes. 

3.2.4.5 - Step 5: brute force control 
Attacks are perfomed from some input packets, but not all. A limit should be 

determined for the sufficient number of votes which enables to determine the secret key. 
That’s what the fudge factor is in charge of controlling. 

A fudge factor (variable fudge[]) is determined for each key byte. The fudge 
threshold, ffact, is given in command line. Its value is 2 by default. 

It basically iterates until it finds a vote which is ffact times smaller than the biggest 
number of votes. The number of iterations gives you the fudge factor of the key byte. As 
do_wep_crack is called on each key byte, a different fudge factor is found for each key 
byte. 

This fudge factor gives the limit of the deepness to go to during the search. As you 
can see with this iteration: 

  for( i = 0; i < 256; i++ ) { 
     for( n = 0; n < N_ATTACKS; n++ ) { 
        wpoll[B][i].votes += coeff_attacks[stability][n] * votes[n][i]; 
     } 
     wpoll[B][i].votes -= 20 * votes[A_neg][i]; 
  } 

    for( fudge[B] = 1; fudge[B] < 256; fudge[B]++ ) 
        if( wpoll[B][fudge[B]].votes < wpoll[B][0].votes / ffact ) 
            break; 

    for( depth[B] = 0; depth[B] < fudge[B]; depth[B]++ ) 
    { 
        constructs the key from results 
        cracks next key byte or checks the key 
    } 
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The depth of the search will not exceed the fudge factor. The body of the loop 
consists of taking the most likely key byte solution, append it to the key, check if it gives 
a good secret key size and check the validity of this key. 

It is possible to exit the loop before going to the maximum deepness if the key if 
found. 

If the loop ends naturally it means that the key has not been found, and all permitted 
paths have been unsuccessful. 

As you can see in the screenshot of Figure 12 or below, the column indicating 
‘depth’ displays the depth level achieved out of the depth permitted (the fudge factor). 

 
A closer look enables to check the calculation of the fudge factor. The first key byte 

has a vote of 60 for DA solution. The next solution has 23 votes, so less than the half of 
the first one. Therefore the fudge factor is 1. Naturally it means: “given the fact that there 
are many votes for this solution, it doesn’t worth going further than the first vote”. 

The second key byte has votes of 52, 32, 22. 32 is not less than half of 52, so the 
iteration would go further. 22 is less than half of 52, so the fudge factor value is 2. We 
invite the reader to check the process with the other lines of the screenshot of Figure 12, 
even if we won’t go on in this report. 

3.2.5 - check_wepkey 
When a hypothesis of the key is found, how to check it is the valid secret key? 

The principle is very easy. Take encrypted data, decrypt it with the key and check the 
result with the plaintext (that you already know). If it matches the key is correct, 
otherwise it’s not. 

As you might have figured out, the SNAP header will be used again as the plaintext. 

There are the steps of the checking: 

• take a random encrypted packet (in fact structure IV + 1st 2 encrypted bytes, 
which are the encrypted form of the SNAP header) 

• decrypt it thanks to the IV and the hypothetical secret key 

• check if it equal 0xAA (value of SNAP header) 

This process is done on multiple packets in order to ensure it’s not just luck. 

Above 4 matches aircrack considers the key is correct. 
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Conclusion 

Afterward 
This report focused on the main component of aircrack, the cracking process. Other 

programs are easier to understand, as it is always the same kind of packet manipulation. 

The report was written in a top down way, and following the opportunistic model, as 
during our research and reverse engineering process. 

One of the tools which helped us a lot is the couple aiCall / aiSee. The first one 
generates flow graphs and the second one displays the graph. The flow control is there 
well displayed and enables to follow the different edges (true or false condition, breaks, 
exiting statements, calls…). Another useful tool when looking at the graph is CCRider. 
This program gives much information on all symbols (functions, variables, constants, 
etc). You easily know how they are declared, and where they are read / killed. 

However all these tools cannot make the developer or maintainer escape the best and 
oldest technique in reverse engineering, which is code reading. It is sometimes long and 
hard, and some pieces of code need to be read ten times, but it certainly helps to turn 
gibberish code into design, architecture, and specifications. 

What about WEP? 
Efforts are underway within the wireless community to address these outstanding 

security issues. The 802.11 committee has formed its "i" subcommittee to explore the 
problems with the WEP protocol and to correct them. 

The temporal key integrity protocol (TKIP) is an interim solution already being 
pushed by the 802.11i committee. Under TKIP, the client starts with a 128-bit "temporal 
key" (TK) that is then combined with the client's MAC address and with an initialization 
vector to create a key that is used to encrypt data via the RC4. Temporal keys are 
changed every 10,000 packets, addressing the glaring key reuse issue in WEP and 
making WLAN systems considerably more secure. 

TKIP systems are expected to be available during the second quarter of 2002, and 
will be backward compatible with existing 802.11b hardware. While TKIP represents a 
step forward, it is widely seen as a stopgap measure that has not been widely tested. 
Many industry experts are pointing the recently adopted Advanced Encryption Standard 
(AES) protocol as the best long term security option. AES equipped wireless LAN 
hardware should be available in 2003. 

Another alternative is to use IPsec for wireless security. IPsec is the Internet 
Engineering Task Force (IETF) protocol for providing encryption and authentication for 
IP traffic. IPsec is characterized by a strong key exchange, or "handshake" function, that 
is used to establish a connection and strong data encryption and authentication that ensure 
both confidentiality and integrity. 
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The IPSec protocol includes two main parts: a key-exchange function (a 
"handshake") that determines how the two sites will communicate, and a bulk 
encryption/authentication function that manages the encryption and authentication of the 
actual data being communicated. 

WLAN LAN systems provide tremendous flexibility to corporate users. However, 
wireless users should not make the mistake of believing that any WEP-based security 
option provides anything more than a way of keeping the honest people out.  The bottom 
line is that there will never be a fully secure network protocol, because each time that a 
new protocol is developed there will be those that will try and find a way to crack the 
system, just like AirCrack manages to crack an 802.11b/g wireless network. Eventually 
there will be a program that will crack the new standard 802.11i. 
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