
Security

Byte-Sized Decryp�on of WEP with Chopchop, Part 1

Last updated Jun 9, 2006.

WEP contains a flawed encryp�on scheme as a result of a poor implementa�on of the RC4 algorithm. This weakness is fairly well

known and exploited. However, what many people do not realize is that WEP has several other significant problems that can also

lead to decryp�on a-acks. In this sec�on we will take a look at these issues and learn how they can be abused to decrypt a single

captured packet in just a few seconds.

The Other WEP Vulnerabili�es

WEP is not secure for many reasons. As previously men�oned, RC4 was not properly implemented in the encryp�on rou�ne. In

addi�on to this, WEP-protected packets can be reinserted or replayed back into the wireless network. Finally, the encrypted

packets can be forged to allow spoofing a-acks. In other words, an a-acker can pretend to be a valid client and inject traffic into

the network that the AP will accept and retransmit. By combining all three of these a-acks together, an a-acker can successfully

crack the shared key in a few minutes.

To help mi�gate this threat and other WEP related problems, wireless vendors implemented dynamic WEP keying. In theory, this

should change the key a5er a set number of packets have been sent, thus preven�ng an a-acker from collec�ng enough packets

that were encrypted with the same key. However, most vendors implemented dynamic keying on a per session basis, not a per

packet number basis. This means the key only changes a5er the user has disconnected and reconnected to the wireless network.

The end result is that most users will transmit enough data to have their 'dynamic' key cracked. However, if the user is only online

for a short period of �me, the use of dynamic keying will protect them from the popular sta�s�cal a-acks.

In theory, the use of dynamic keys seemed like a poten�al way to stop malicious hackers. At least un�l KoreK deduced a method for

cracking one packet at a �me, regardless of the key. With this approach, an a-acker never has to know the shared key used to

encrypt the data, but instead focuses on two other elements of the data transfer process.

ICV

WEP includes an integrity check known as the integrity check value (ICV). When a packet is ready for transmission, the data is first

passed through a CRC-32 algorithm, which creates a four byte value that represents the original data. This CRC-32 value is then

appended to the end of the data. Finally, this whole value (data + ICV) is XOR'd with the streaming key created by the RC4

algorithm. This ciphertext is then sent out to the access point (or client) that then XORs the ciphertext with its own streaming key

to recreate the original plaintext + ICV. The plaintext is then passed into a CRC-32 algorithm once again to create a new ICV. If the

new ICV matches the one in the original packet, the data is considered valid. Figure 1 shows how the CRC-32 algorithm fits into the

decryp�on process.

Figure 1 The ICV process

The problem is that CRC-32 is a widely known integrity valida�on func�on that is generally used to protect against data corrup�on.

The algorithm was not built with security in mind, and as such can be tricked and abused. In the case of a WEP’s use of CRC-32, an

a-acker can capture an encrypted packet, change the content of that encrypted data in that packet, recreate a new encrypted ICV

Guides > General Security and Privacy http://www.informit.com/guides/printerfriendly.aspx?g=security&se...

1 of 2 4/8/2015 8:37 PM

that validates the altered encrypted data, and reinject that packet back into the wireless network. As the wireless guru KoreK

explains, this en�re process is based upon some rela�vely simple XOR math (at least rela�ve to some other KoreK work).

First, the en�re message (M) is actually two parts — the plaintext (P) and the ICV value. If an a-acker wants to change the

message, they have to alter both parts. Ignoring the fact that the message is encrypted for the moment, crea�ng a new valid

packet is fairly simple. All an a-acker has to do is create a bitmask for the modifica�on they want, and then XOR the original data

with that mask. Next, an a-acker calculates a new ICV for the bitmask, which is then XOR’d with the original ICV. Finally, the

modified data and new ICV are concatenated together and injected. Mathema�cally, it looks like this (Mod=bitmask, + denotes

concatena�on).

Mnew = Pnew + ICVnew = Porg XOR Mod + ICVorg XOR ICVmod

Crea�ng a new valid encrypted packet is not any more difficult because the rela�onship is maintained whether or not the message

is encrypted. The reason is that the encryp�on itself is an XOR process that basically cancels itself out for this par�cular a-ack,

which you can see below in a step by step outline (M = encrypted message).

Morg = (Porg + ICVorg(Porg)) XOR RC4

Therefore...

Mnew = Pnew + ICV(Pnew)=Porg XOR Mod + ICVorg(Porg) XOR ICV(Mod)
Mnew = Pnew + ICV(Pnew) = (Porg + ICV(Porg)) XOR (Mod + ICV (Mod))
Mnew = Pnew + ICV(Pnew) = Morg XOR (Mod+ICV(Mod)
Mnew = Morg + (Mod+ICV(Mod))

If all this algorithm stuff is not your thing, just know that you can XOR the original encrypted message with an equally long

modified data string to create a new valid packet. This process is not really all that complex and can be done very quickly with a

computer.

While changing the data in a WEP packet is a viable a-ack, it is probably not going to result in much of anything by itself because

the a-acker has no idea what they are changing. Does the packet contain email informa�on? Is it part of a web page? The a-acker

will probably not know, and as a result, the packet mangling will manifest as corrupt applica�on data and probably be rejected by

the final des�na�on.

In the next sec�on we will look at how Chopchop uses this ICV flaw and another more dangerous vulnerability, to crack WEP

protected packets — one byte at a �me.

Guides > General Security and Privacy http://www.informit.com/guides/printerfriendly.aspx?g=security&se...

2 of 2 4/8/2015 8:37 PM

