
Security

Byte-Sized Decryp�on of WEP with Chopchop, Part 2

Last updated Jun 16, 2006.

Inverse Arbaugh A#ack

NOTE

Editor’s Note: For those of you jumping in directly to this page, be sure to read Part 1 on the previous page.

KoreK took the widely known weak ICV problem and deduced that if an encrypted packet is truncated by one byte, a new valid message

can be created because its new ICV is %ed to that one missing UNENCRYPTED byte. Technically this is known as an Inverse Arbaugh

A.ack, which leverages the weak ICV against itself via a series of calcula%ons to deduce, or guess, the missing byte. Again, the only

concern is whether or not the packet is valid, as determined by the ICV. The data in the packet is not relevant.

In short, KoreK took a very close look at how the ICV was created and found a mathema%cal rela%onship between the truncated

plaintext byte of the message and the value used to turn the invalid shortened message into a valid one. The following breaks down the

process.

The first step is to take the captured packet(M) and remove the last byte of the packet to create a value, M-1. Since we do not know

what the plaintext value of the truncated byte was, we next have to start guessing. Fortunately, there are only 256 possible values (00,

01, ...254, 255) for that plaintext byte. So, we first assume the truncated byte was 00 and plug that value into an equa%on (see note

below) to create a bitmask that a.empts to turn the invalid M-1 packet into a valid M-1 packet. We then test this new M-1 packet by

injec%ng it into the network. Once the packet is received by the access point, it is checked and either validated or rejected. Again, each

packet is based upon a guess of the truncated byte, so it only has 1/256 chance of being correct. However, if the guess is correct, then

the AP will validate it, and resend it back out to the wireless network. Assuming an a.acker is monitoring the wireless network, they

will see this packet and know that they made the right guess. As a result, they now know the last plaintext byte of the message (M-1). It

is then possible to calculate the PRGA value used to encrypt the byte via yet another XOR opera%on (P XOR M = RC4 PRGA). In other

words, an a.acker can crack a packet one byte at a %me and obtain both the plaintext value of the packet and the streaming key used

to encrypt that packet.

NOTE

Note: This mathema%cal equa%on that is used is outlined in the DOC file that KoreK included with Chopchop. However, unless you

enjoy dealing with polynomials, inverse values, and coefficients, then trust me when I say that it is possible to create a bitmask

value that can be XORed with the truncated message to produce a new message (M-1).

So, let's review this again.

First, the message (P+P(ICV)) is truncated by one byte (P-removed) to create "M-1." Second, we create a "Value" via a mathema%cal

equa%on that is directly %ed to P-removed. Next we XOR M-1 with "Value" to create a new M-1v that is hopefully valid. Finally, the

M-1v packet is injected. If M-1v is retransmi.ed by the access point, it is valid, which also means the "Value" was correct and therefore

Guides > General Security and Privacy http://www.informit.com/guides/printerfriendly.aspx?g=security&seqN...

1 of 3 4/8/2015 8:36 PM

means the guessed plaintext byte was correct. Using this process, the a.acker can deduce the plaintext byte and the PRGA byte that

was used to create each encrypted byte of the packet. If the AP does not retransmit the byte, then the guessed byte was not correct

and the a.acker needs to try the next byte value.

If the byte value was correctly guessed, then the whole process starts anew. Except this %me the a.acker starts with the new packet

that was just injected and validated by the AP. Again, it doesn't ma.er what is in the packet, as long as the ICV is valid. The a.ack will

eventually yield the en%re PRGA used to encrypt the original packet, which can then be XORed with the original encrypted packet to

produce the plaintext data.

Chopchop

Thankfully, KoreK put all these flaws together into one package known as Chopchop. This niHy piece of code does several things. First, it

monitors incoming data for specific packets that are injected during the tes%ng rou%ne. The program then takes a previously captured

valid packet and starts the decryp%on process. It truncates the last data byte, calculates a "Value" based upon the guessed byte, XORs

this "Value" with the captured packet to create a new packet, spoofs the des%na%on MAC address for tracking purposes, rebuilds the

packet, and then injects it into the wireless network. Since the program is monitoring all the network traffic, it will detect the valid

packet when it is retransmi.ed by the AP. Once this packet is received, it looks at the des%na%on MAC address and determines the

corresponding plaintext byte that was used to create the "Value" that was used to create the encrypted packet. This byte is recorded,

along with the PRGA value that would be used to encrypt the byte, and then this whole rou%ne is repeated with the new and valid

captured packet un%l the en%re PRGA has been deduced. Finally, the deduced PRGA is XORed with the original cyphertext to create

the original plaintext. While this somewhat simplifies the a.ack, clearly illustrates that any WEP packet can be cracked despite the use

of dynamic keying.

Using Chopchop is much easier than understanding how it works. First, setup a wireless network that is using WEP. Then load up a

laptop with the Auditor LiveCD from h.p://www.remote-exploit.org (please donate!). Open up ethereal and capture a single data

packet and save it to memory. Locate the file and run "tethereal –nr file.pcap" to obtain a valid MAC address. For the best results, you

will need a "target" to be online, which should be exposed via the tethereal command. Finally, configure your wireless network card for

monitoring and run the following command:

chopchop –burst 13 –m mac -b bssid -p packet.pcap

The burst op%on defines how quickly to inject the packets. The –m value is the MAC address of the target. The –b value is the BSSID of

the access point. And –p is the single packet you are trying to crack. Once you launch the a.ack, the program will output the current

byte and how many frames were wri.en to the screen. Expect it to take anywhere from several seconds, to a couple minutes,

depending on the size and content of the packet. Once it has completed, you can reopen the packet in Ethereal or tethereal to view its

contents! Figure 2 illustrates what Chopchop looks like while cracking a packet.

Figure 2: Chopchop in ac%on

Summary

Chopchop is a complex piece of work that targets WEP’s implementa%on of XOR and ICV. By a.acking a WEP protected packet one byte

at a %me an a.acker can bypass the whole encryp%on process and gain access to the hidden data underneath. Gone are the days

where dynamic keying offered adequate protec%on for its users. In fact, WEP is broken in so many ways it should be outlawed. If you

currently deploy this "protec%on," please find an alterna%ve. Program like Chopchop only highlight the dangers and weakness of this

protocol — it is up to you to put this knowledge to use!

***Thanks to KoreK for wri%ng this program and including some details in the DOC file included with the package. I doubt this ar%cle

would have been possible without it!

***Thanks to Joshua Wright for reviewing the ar%cle, making a few sugges%ons, and clearing up a few misconcep%ons about dynamic

Guides > General Security and Privacy http://www.informit.com/guides/printerfriendly.aspx?g=security&seqN...

2 of 3 4/8/2015 8:36 PM

keying for me!

References and Resources

WEP Inverse induc%ve a.ack reveals plaintext:

h.p://www.wirelessve.org/entries/show/WVE-2006-0037

Chopchop Informa%on:

h.p://www.wirelessve.org/entries/show/WVE-2006-0038

Chopchop (DOC file contains some very details informa%on on the a.ack):

h.p://www.netstumbler.org/showthread.php?t=12489 (must be member to download)

Arbaugh, William A. "An Induc%ve Chosen Plaintext A.ack against WEP/WEP2:"

h.p://www.cs.umd.edu/~waa/a.ack/v3dcmnt.htm

Guides > General Security and Privacy http://www.informit.com/guides/printerfriendly.aspx?g=security&seqN...

3 of 3 4/8/2015 8:36 PM

